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ABSTRACT 

 Type 1 diabetes mellitus (T1DM) is an endocrine disorder that continues to afflict a growing 

proportion of the U.S. population.  Characterized by an autoimmune attack on the pancreatic [beta] cells 

that leads to their destruction, T1DM develops from absolute insulin deficiency resulting in chronic 

hyperglycemia. Although the disease requires lifelong insulin therapy and confers enhanced risk for 

long-term complications, the mechanism of [beta] cell death remains unclear. Fas receptor signaling is 

critical among cells of hematopoietic origin for its role in immune homeostasis and mediation of target 

cell death. Fas receptor-ligand interactions might also have a role in [beta] cell death leading to the 

development of T1DM; pro-inflammatory cytokines released from islet leukocytes can induce Fas 

receptor to the [beta] cell surface, and systemic loss-of-function mutations in Fas receptor and Fas 

ligand (FasL) abrogate disease in spontaneous diabetes-prone mice. However, systemic deficiency in Fas 

and FasL causes an alteration in the T cell repertoire that prevents diabetes, and thus cannot be 

attributed to absence of Fas [beta] cell signaling. Moreover, the use of distinct Fas mutations and 

transgenic models that produce dissimilar mechanisms of [beta] cell death leads to conflicting results 

reported in the scientific literature. Recent evidence using transgenic mouse models of diabetes has 

indicated a role for Fas in the insulitic phase but not the effector phase of [beta] cell death, while other 

studies have suggested that alteration of the T cell repertoire by Fas signaling is a causal factor in the 

autoimmune [beta] cell attack. Furthermore, ectopically-expressed FasL is a potential therapeutic tool 

for protection of islet transplants by its known ability to provide immune privilege in some tissues. This 

literature review collectively presents the diverse roles for Fas signaling in [beta] cell death and provides 

insight into why conflicting conclusions regarding Fas signaling currently exist. Thus, the goal of this 

literature review is to enable investigators interested in Fas-mediated signaling in the pancreatic [beta] 

cell to choose an appropriate model system for study design that ideally will translate to therapeutic 

interventions for T1DM.  
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CHAPTER I 
 

General Overview 
 

I. Characterization of Diabetes Mellitus 

 Diabetes mellitus is the umbrella term for the most common endocrine disorder affecting 

people in the United States. The rise in prevalence of this disease is accompanied by numerous studies 

devoted to understanding the molecular mechanism of action with the hope of generating novel 

therapeutic interventions. A much larger proportion of people now know at least one individual affected 

by diabetes and are dedicated to increasing awareness in an effort to gain funding for diabetes research.  

To appreciate the implications of living with diabetes and the critical need for effective therapies, it is 

important to understand the clinical characterization and pathogenesis of the disease. 

 Two major forms of diabetes exist: These are Type 1 (T1DM) and Type 2 (T2DM) and they share 

a common phenotype of overall losses in functional β-cell mass leading to hyperglycemia. Diminution of 

the pancreatic β-cell mass results in insulin deficiency. Insulin is a hormone secreted by β-cells of the 

pancreatic islet of Langerhans, and is critical to blood glucose homeostasis via its ability to promote 

cellular glucose entry and exit from the circulation. Insulin secretion is controlled by a number of 

different fuel substrates, with glucose providing the biggest overall effect. Glucose-stimulated insulin 

secretion (GSIS) is directed by a complex interaction of multiple metabolic pathways that begins with β-

cell glucose entry and metabolism, and concludes with exocytosis of insulin-containing granules [1]. Loss 

of endogenous insulin signaling leads to alterations in fuel metabolism in a variety of tissues, and 

drastically impacts blood glucose homeostasis; the clinical manifestation is development of diabetes 

mellitus.  

 T2DM is the most prevalent form of diabetes, accounting for over 90% of total cases [2]. 

Although most commonly diagnosed in adults over 40 years of age, T2DM incidence continues to 
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increase in young adults and adolescents. Development of the disorder is initiated with insulin 

resistance, whereby a decrease in insulin-mediated glucose uptake causes the pancreatic β-cell to 

respond by expanding its mass and increasing insulin secretion. However, once the β-cell can no longer 

expand or secrete sufficient amounts of insulin to match the rising insulin demands, occurrence of β-cell 

deficiency leads to impaired glucose tolerance and overt T2DM [3]. A number of factors are associated 

with increased risk for development of T2DM, and include an individual’s genetic background as well as 

environmental factors. For example, visceral fat accumulation has progressively increased among the US 

population in parallel with T2DM incidence. Although insulin resistance is the initial step in development 

of T2DM, only about one-third of obese insulin-resistant individuals progress to overt T2DM; only when 

the β-cell can no longer meet the body’s insulin demands do chronic hyperglycemia and diabetes 

develop.  

Gestational diabetes mellitus (GDM) is a form of diabetes that is significantly less prevalent than 

either T1DM or T2DM, affecting approximately 7% of pregnant women, but whose pathogenesis is 

similar to T2DM. GDM is most commonly diagnosed in the third trimester of gestation and can be 

treated with dietary intervention and exercise, although insulin therapy may be required for more 

severe cases. Although the disorder often resolves at birth, women treated for GDM are at a 

significantly increased risk for development of T2DM, and to a much lesser extent T1DM. Maternal GDM 

increases the offspring risk for adverse outcomes, most notably macrosomia [4]; intrauterine exposure 

to hyperglycemia has also been suggested to create metabolic memory that results in T2DM 

development later in life. Indeed, children born to mothers with GDM have a significantly enhanced risk 

for development of T2DM relative to children born to mothers who do not carry the disorder. 

T1DM is less prevalent than T2DM, yet currently affects approximately 900,000 people in the 

United States and is increasing at an alarming rate. Over 75% of these cases are onset at the age of 18 or 

younger, hence the antiquated terminology of Juvenile onset diabetes. T1DM develops when an 
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individual’s immune system loses the ability to differentiate foreign microorganisms from self [5];  this 

results in immune dysregulation and expansion of autoreactive CD4+ and CD8+ T cells, as well as B 

lymphocytes and other cells of hematopoietic origin. The disorder is characterized by complete insulin 

deficiency secondary to autoimmune-mediated β-cell death, which occurs via a two-step process (Figure 

1). The first phase is known as insulitis, in which dendritic cells, macrophages, and lymphocytes (most 

abundantly CD8+ T lymphocytes), infiltrate the islet of Langerhans and cause inflammation upon release 

of pro-inflammatory cytokines. The islet of Langerhans contains multiple cell types: α, β, δ, ε, and PP 

cells, which exhibit endocrine function by their secretion of hormones directly into the bloodstream. 

Interestingly, however, T lymphocytes selectively target β-cells for death, leaving all other cell types 

residing within the islet free from the cytotoxic effect of these autoreactive cells.  The second and final 

effector phase of β-cell death is characterized by immune cell-mediated β-cell destruction through 

signaling mechanisms that are still unclear [6-8]. Progression of β-cell death is variable in duration, and 

clinical symptoms generally begin appearing after the loss of approximately 70-80% of β-cells [9]. Typical 

Figure 1. Schematic that diagrams progression of the islet β-cell to autoimmune-mediated death, 
   and leads to development of overt Type 1 diabetes mellitus. 
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signs of chronic hyperglycemia most commonly include polyphagia, polyuria, polydipsia, weight loss, and 

lethargy [10].  

After diagnosis of T1DM, treatment involves achieving a critical balance between insulin 

administration and food intake; the ultimate goal is to minimize fluctuations in self-monitored blood 

glucose levels, that when uncontrolled, enhance the risk for long-term complications. Insulin was 

discovered as the secreted pancreatic factor required to cure the disease symptoms [11] and indeed, 

insulin administration is still the only therapy available to treat Type 1 diabetes. For a number of years, 

subcutaneous injection multiple times daily was the only method of insulin administration. However, 

alternative routes of insulin administration have recently become available and provide the capability 

for tighter regulation of blood glucose levels, in addition to other factors. For example, the insulin pump 

allows for a constant basal insulin drip and is connected subcutaneously, so lessens the invasiveness of 

the treatment conferred by insulin injection. Furthermore, the pump may offer a way to maintain 

glycosylated hemoglobin (HbA1c) in a narrower range; HbA1c is a good measure of long-term average 

blood glucose levels. Importantly, the ability to maintain blood glucose levels near the normal range (70-

100 mg/dL) significantly lessens the risk for long-term complications [12]. Individuals with poorly 

controlled diabetes mellitus are at an enhanced risk for a plethora of long-term complications, including 

nephropathy, neuropathy, retinopathy, amputation, heart disease, and earlier than average mortality 

rates [13].  

 

II. Predisposing Factors that Affect Risk for T1DM 

 Some genes have a significant association with T1DM, and can have a role in either protection or 

enhanced vulnerability for the disorder. The human leukocyte antigen (HLA) is a region on chromosome 

6p21 that is also known as insulin-dependent diabetes mellitus locus (IDDMI). Susceptibility loci found 

on the HLA region account for nearly 45% of genetic vulnerability for T1DM, more than any other 
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associated gene, although more than 30 non-HLA regions have also been shown to affect risk for the 

disease [14]. HLA genes can also be used as markers of risk for T1DM, in combination with the presence 

of autoantibodies. This genetic link associated with vulnerability for T1DM is exemplified by family 

members of a Type 1 diabetic who themselves are also at enhanced risk for diabetes [15]. 

External precipitating events are just as noteworthy as genetic background in regards to 

triggering an autoimmune response towards the pancreatic islet. However, a more complex model than 

one single environmental factor might be required to explain disease onset; indeed, T1DM progresses 

through multiple stages, each of which could be influenced by one or multiple environmental triggers 

[16]. A number of environmental agents have been associated with enhanced risk for the disease; 

moreover, the rising incidence of the disease suggests that there is a corresponding increase in exposure 

to such factors. Viral infection is one such factor, and has been heavily investigated for correlation with 

T1DM. Indeed, the seasonal peak of enterovirus infections parallels a seasonal rise in incidence of T1DM 

[9]. Specifically, antibodies against the Coxsackie B family of enteroviruses have been identified as being 

present in recent-onset T1DM patients. However, direct measurement of intra-islet viral presence is 

difficult to attain in a non-invasive fashion. Although viral infection is the most well-studied non-genetic 

factor associated with vulnerability for T1DM, numerous others have also been suggested to have the 

ability to modify disease risk. These include climate, vaccine administration, psychological stress, early 

infant diet, exposure to dietary or environmental toxins, sun exposure, and population hygiene [17]. 

 

III. Prevention/ Interventions against Overt T1DM 

 In recent years, a widespread effort has been focused on prevention of T1DM in pre-diabetic 

individuals, in addition to disease-abrogating therapies targeted towards overt diabetics. Recent-onset 

diabetes patients are the most frequent population that such therapies have been tested on. A number 

of interventions that have been successful in animal models of spontaneous diabetes have been further 
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investigated in human clinical trials, but none have yet seen permanent remission from disease and such 

trials confer a number of limitations. There are currently no biomarkers that correlate with disease 

progression, and endpoints for clinical trials are often limited to analysis of β-cell function after a pre-

defined period of time [16]. Furthermore, non-invasive techniques to analyze β-cell mass have not yet 

been developed, which prevents direct measurement of therapy effectiveness within the islet. Stem cell 

transplantation and islet transplantation are noteworthy potential therapies for T1DM, but outcomes 

with these have been overall unsuccessful; the transplanted islets end up susceptible to the same 

destructive autoimmune attack as the endogenous islets. Although overt diabetics transplanted with 

healthy islets or pancreata have remained insulin-free for a period of time, they often endure a rigorous 

regime of immunosuppressant drugs to prevent autoimmune attack on newly-transplanted cells [18].  

Prevention trials are of interest in the diabetes community, especially among individuals 

identified as high-risk in regards to T1DM development. First-degree relatives of a Type 1 diabetic who 

test positive for one autoantibody have a less than 20% risk for disease development, whereas the 

presence of two or more circulating autoantibodies confers a 90% risk [16]. However, as in trials for 

overtly diabetic individuals, prevention trials have also presented with disappointing results. Participant 

recruitment requires screening of a large number of people, since autoantibody frequency among 

relatives of Type 1 diabetics is only about 3.5%. Moreover, individuals who do enroll in such trials must 

not have already undergone islet autoimmune attack, and experimental conditions must be exact in 

regards to dosing of the given experimental agent [16]. Before implementation of a successful 

prevention for pre-diabetics or therapy for overt diabetics, a number of barriers need to first be 

overcome. Centrally, the autoimmune trigger and mechanism of β-cell death are still unclear; without a 

comprehensive understanding of either of these factors, it will be extraordinarily difficult to devise an 

effective intervention. 
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Elucidation of the β-cell death mechanism has proven challenging to investigators; although it 

still remains unclear, a number of proteins and pathways have been suggested to have a role in the 

process. Controversy resounds in both the proposed intracellular signaling pathway and whether this 

pathway should be classified as an apoptotic or non-apoptotic event [19-21]. Two signaling pathways in 

particular have been investigated for a role in β-cell death; Fas receptor and the perforin/granzyme 

pathway have critical function in maintenance of immune homeostasis and in mediation of target cell 

death. Although research into the role for perforin/granzyme in development of T1DM has been 

relatively consistent in that it likely mediates the effector phase of β-cell death, the role for Fas is more 

obscure. The signaling pathway initiated by interaction between Fas and Fas ligand (FasL) has been 

shown to be both dispensable and indispensable for β-cell death and development of T1DM, although a 

number of separate genetic backgrounds, mutations, and transgenic models have been used to derive 

these results. This is significant in that each of these model systems might confer separate mechanisms 

of β-cell death, and could explain the inconsistencies in Fas β-cell research. This literature review was 

undertaken with the intent of reconciling the current state of the Fas β-cell death field. Extensive 

searches were conducted to compile all relevant literature (Appendix: Figure 3, Tables 3 & 4), which 

was subsequently organized and analyzed based on each group’s choice of model system to test a 

similar hypothesis. Each mutation or transgene used in Fas β-cell literature was examined for reported 

findings, in addition to strengths and limitations in the context of usefulness for investigation of Fas-

mediated β-cell death. To date, there is no single document that summarizes the research relevant to 

Fas signaling in β-cell death; this document will be innovative in that it will be the first to do so, and will 

provide a comprehensive reference for researchers interested in investigating the role for Fas-FasL 

interactions in β-cell death and development of T1DM. 
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CHAPTER II 
 

Death in the FAS Lane: A Role for Fas Receptor Signaling in Pancreatic 
β-Cell Death? 

 
I. Introduction 

Type I diabetes mellitus (T1DM) is a chronic autoimmune endocrine disorder that continues to 

increase in incidence, and confers an enhanced risk for a number of long-term health consequences. 

Although innumerable groups have continued for years to investigate its pathogenesis, the mechanism 

of how immune-mediated β-cell death occurs is still unclear. A number of proteins capable of mediating 

cell death have been implicated in this process [22], one of which is the Fas receptor (also known as 

CD95/APO-1). Interaction between Fas and its respective Fas ligand (FasL/CD95L/APO-1L) has already 

been established as critical for homeostasis among cellular populations of the immune system, as well 

as in maintenance of immune privilege in some tissues. Because FasL is expressed on the surface of 

activated lymphocytes, it is possible that FasL on autoreactive islet-infiltrating cells could mediate 

pancreatic β-cell death through interaction with β-cell surface Fas. The ability of Fas to be induced to the 

β-cell surface strongly supported this notion [23], and was further investigated with the demonstration 

that diabetes-prone mice with a systemic deficiency in Fas or FasL are protected from diabetes 

development [24, 25]. However, the absence of Fas-FasL interactions for maintenance of immune 

system equilibrium results in a number of physiological abnormalities that affect its natural response to 

an autoimmune trigger.  

 The problems inherent to a systemic Fas deficiency were circumvented by multiple groups that 

generated new methods for investigating Fas-FasL interactions in the islet β-cell, without depleting its 

function in hematopoietic tissues. However, this resulted in a field comprised of animals and cell lines 

from separate genetic backgrounds coupled with knockout mutations and transgenic overexpression, of 

which together form an extraordinarily convoluted role for Fas as an effector of β-cell death.  
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 If Fas is indeed critical for β-cell death, interruption of the interaction between β-cell Fas and 

immune cell FasL should confer a level of protection against β-cell death and ultimately development of 

T1DM. This review aims to characterize the role of Fas-FasL interactions in both physiological 

homeostasis and in β-cell pathology leading to T1DM, and will investigate the proposed links between 

its known homeostatic functions and its potential ability to mediate autoimmune pathogenesis leading 

to T1DM. Additionally, we will identify and relate the studies of Fas/FasL on β-cell death by presenting 

their findings, inconsistencies in relation to each other, and alternative approaches for therapeutic use 

of Fas-FasL in protection of the β-cell from autoimmune-mediated death. From these findings, future 

investigators interested in the role for Fas and FasL in β-cell death will be better equipped to choose an 

appropriate model system for derivation of findings that could ultimately translate to therapeutic 

interventions. 

 

II. Characterization of Fas & FasL 

General Mechanism of Action 

Discovery of the Fas receptor was preceded by the synthesis of two monoclonal antibodies that 

recognized the same target receptor; both had cytolytic activity in a variety of human cell types, and 

were termed anti-APO-1 (apoptosis antigen 1) and anti-Fas [26, 27]. Isolation of  cDNAs encoding the 

antigen to anti-Fas led to identification and characterization of the Fas receptor [28], whose gene lies on 

human chromosome 10q24.1 [29], and on its homologous mouse counterpart chromosome 19 [30]. 

Characterization of the APO-1 antigen and its nucleotide sequence revealed that it lay on chromosome 

10q23 [31] and shares sequence identity with Fas antigen gene [26]; hence, the terms Fas and APO-1 are 

often used interchangeably.  

The Fas protein is a trimeric receptor that is a member of the death receptor (DR) subfamily and 

is part of the larger tumor necrosis factor receptor (TNF-R) superfamily [32]. Members of the DR 
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subfamily share a cysteine-rich extracellular domain and a cytoplasmic region, which is referred to as a 

death domain (DD), and is required for apoptotic signal transduction upon receptor activation [33, 34].  

Additionally, the receptor is characterized as a type I transmembrane protein due to the location of its 

extracellular N-terminal and intracellular C-terminus [28]. The cytolytic activity initiated by binding of 

anti-Fas to its receptor suggested that Fas might have a natural ligand which communicates an apoptotic 

signal. Indeed, the Fas ligand (FasL/CD95L/APO-1L) was first identified on the surface of a cytotoxic T cell 

hybridoma by use of soluble Fas antigen [35], and soon after confirmed to be the ligand specific for Fas 

receptor; activation of the receptor induced cytotoxic activity against Fas-expressing cytotoxic T 

lymphocyte (CTL) hybridomas but not against those lacking Fas activity [36].  

FasL is a member of the TNF family whose gene resides on human and mouse chromosome 1 

[37, 38], and is classified a type II transmembrane protein due to the presence of an internal 

hydrophobic domain and a COOH-terminal region that resides outside the cell [8]. Although it occurs 

naturally in a membrane-bound form (mFasL), mFasL cleaved by metalloproteinases results in a soluble 

form of the ligand (sFasL), which can exist as a trimer [39, 40]. Whereas sFasL can still bind Fas, mFasL is 

a much more potent stimulus for cytotoxic activity than sFasL. [41-43]. In fact, sFasL has been shown to 

promote autoimmunity, tumorigenesis, and protection from the apoptotic effects of mFasL [44, 45], 

although it can still function as a death effector [40].  

Fas-FasL interactions occur in an autocrine or paracrine fashion through one of three types of 

interactions [8]:  

1. trans interaction; Fas and mFasL, expressed on the surface of distinct cells, cross-link to 

mediate death of the Fas-expressing cell. 

2. cis interaction; both Fas receptor and mFasL are expressed on the surface of the same target 

cell. 
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3. sFasL binds to Fas expressed on the same cell sFasL is released from (cis), or sFasL binds to Fas 

on the surface of a neighboring cell (trans).  

Binding of FasL to its receptor induces trimerization of Fas and initiates a conformational change 

within the cytoplasmic death domain that promotes association of an intracellular Fas-associated death 

domain (FADD), pro-caspase-8, and the caspase-8 regulator cellular FLICE-like inhibitory protein (cFLIP); 

these together comprises the death-inducing signaling complex (DISC). Although cFLIP is most 

commonly an anti-apoptotic molecule, the cFLIP long (cFLIPL) isoform can support cell death [46]. The 

FADD promotes oligomerization of procaspase-8 and through autoproteolysis is subsequently released 

as active caspase-8 into the cytoplasm [46]. At this stage of the apoptotic pathway, the type of cell in 

question determines how the pathway will proceed; this can be either directly through an extrinsic 

pathway (type I cell) or indirectly through an intrinsic mitochondrial pathway (type II cell) [47](Figure 2). 

Cell types such as thymocytes, activated T cells, and B lymphoma cells characterize the type I cell 

Figure 2. Schematic representation of the Fas-induced signaling pathway that leads to AICD and target 
cell death. 



www.manaraa.com

 
 

12 
 

[48], whereas hepatocytes and β-cells are classified as type II cells [49, 50]. X-linked inhibitor of 

apoptosis (XIAP) is the only member of the mammalian IAP protein family that directly inhibits caspases 

and acts on the effector caspases -3 and -7 [51]. This mechanism discriminates between type I and type 

II apoptosis, because the absence of XIAP causes hepatocytes to undergo apoptotic death independent 

of the mitochondrial pathway [52, 53]. In contrast with type I cells, type II cells have much lower levels 

of Fas-dependent DISC formation and subsequent caspase-8 activation [46]. The limited availability of 

active caspase-8 in type II cells prevents accumulation of adequate quantities of cleaved caspase-3 for 

facilitation of apoptosis; such quantities of caspase-8 are, however, sufficient to cleave Bid and allow 

type II cells to progress through the intrinsic mitochondrial pathway [54, 55].  

Downstream of caspase-8 activation, type II cells proceed through a mitochondrial pathway 

initiated with caspase-8-mediated cleavage of the BH3-only protein Bid. Newly-cleaved tBid, facilitated 

by interaction with mitochondrial carrier homologue 2/Met-induced mitochondrial protein 

(MTCH2/MIMP), translocates to the mitochondrial outer membrane to activate the pro-apoptotic 

proteins Bax/Bak [56]. Bax/Bak mediate mitochondrial outer membrane permeabilization (MOMP), 

releasing a second mitochondria-derived activator of caspase/direct IAP binding protein with low pl 

(Smac/DIABLO) [57], cytochrome c, and other apoptogenic factors from the mitochondria. In the 

presence of ATP, cytochrome c binds apoptotic protease activating factor-1 (APAF-1) to form the 

apoptosome; recruitment of inactive caspase-9 to the apoptosome leads to its autoactivation, allowing 

it to cleave caspase-3 [58]. Additionally, the XIAP antagonist Smac/DIABLO promotes caspase-3 cleavage 

by blocking XIAP-caspase-3 binding [51, 53](Figure 2).  

By contrast, type I cells use caspase-8 to directly cleave and activate caspase-3 [53]. Active 

caspase-3 induces proteolysis of structural proteins and other essential cellular components, leading to 

the hallmark characteristics of apoptosis. Although Fas-FasL interactions are most well-characterized for 



www.manaraa.com

 
 

13 
 

their apoptotic activities, survival pathways may also be initiated; however, these concepts are beyond 

the scope of this article (see Ref. [59-62] for further review).  

 
Constitutive Expression  
 

The Fas receptor is constitutively expressed in a variety of tissues throughout the body, with 

abundant expression in the thymus, liver, ovary, and heart [30]. Fas mRNA expression has also been 

demonstrated in thymocytes, where activation of mature T and B cells promotes Fas cell surface 

induction [63, 64].  

Because of its ability to induce death in Fas-expressing cells, FasL tissue expression is tightly 

controlled. FasL mRNA is constitutively expressed in a select range of tissues, centrally splenocytes and 

thymocytes, and its cell surface expression can be induced after activation of T lymphocytes and natural 

killer (NK) cells [35, 39]. FasL mRNA has also been demonstrated at low levels in mouse lungs, small 

intestine, kidney, and liver [65, 66], and the protein is constitutively expressed on the cell surface of 

immune-privileged tissues such as the eye, testes, and thymus [66, 67].   

 FasL assists in maintaining immune privilege in a number of tissues, where its constitutive 

expression at the surface of such sites can induce apoptosis in activated Fas+ infiltrating lymphocytes 

[66-68]. Immune privilege is generally defined as a situation in which a tissue is protected from immune 

infiltration, even during foreign invasion, as the proinflammatory immune response would be more 

destructive than its foreign target [69]. The eye is the most well-characterized site of immune privilege 

and multiple studies support a role for FasL in prevention of immune infiltration in the eye [66, 67]. 

Additionally, the cornea has an 80-90% transplantation success rate with no immunosuppressant use 

[69], and FasL expression is required for corneal graft survival  [70]. Studies in the testes have shown 

similar results; loss of FasL expression in testicular grafts transplanted under mouse kidney capsule 

causes them to undergo immune infiltration and rejection, yet transplants that express FasL can survive  

[68]. 
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 The concept of immune privilege has also been extended to tumor cells that express FasL and 

are therefore resistant to lymphocyte invasion, supporting a role for FasL in tumorigenesis [71, 72]. 

Inhibition of FasL expression in murine colon tumor cells suppresses tumor growth and formation and 

increases lymphocyte infiltration [73], indicating that tumor FasL expression encompasses both 

defensive and offensive strategies for tumor survival. However, controversy surrounds the role of FasL in 

tumor immune escape, likely stemming from transplantation studies in which FasL overexpression can 

cause rejection of tissue transplants [72]; although beyond the scope of this article, the interested 

reader is directed to Ref. [74] for further review. 

 
Role in Immune Homeostasis   
 
 Immune homeostasis is known as the capability of an organism to maintain equilibrium among 

cells of hematopoietic origin. One of the important roles for Fas-FasL interactions is in maintenance of 

immune homeostasis by preventing overgrowth in this cellular population, and is particularly significant 

for CD4+ and CD8+ T lymphocytes [75-77]. CD4+ T cells are referred to as helper T (TH) cells and shape 

adaptive immune responses by producing cytokines and enhancing expression of costimulatory factors. 

CD8+ T cells, in contrast, are known as cytotoxic T (TC) cells due to their direct role as cytotoxic effectors 

against target cells, but are also capable of cytokine production [78].  

 To mount an appropriate T cell-mediated response, the immune system first requires a method 

of antigen recognition. This is accomplished by a high-affinity interaction between the T-cell receptor 

(TCR)/CD3 complex with MHC-associated antigenic peptide [79]. Appropriately regulated lymphocyte 

growth and maintenance are critical for prevention of recognition of self antigens and initiation of 

autoimmunity. 

 Differentiation from a multipotent hematopoietic stem cell to mature T cell is a complex process 

that requires a coordinated effort by various transcription factors and regulatory mechanisms. Although 

they originate in the bone marrow, T cell precursors migrate to the thymus to undergo maturation as 
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thymocytes and can eventually become self-restricted single positive (SP) CD8+ or CD4+ T lymphocytes 

[80].  

On arrival to the thymus, T cell precursors do not express any of the characteristic cell surface 

markers of a mature T cell; additionally, approximately 95% of mouse thymocytes express the Fas 

protein on their cell surface [81]. A period of rapid proliferation continues through the first two of four 

double negative (DN) stages of development (CD4- CD8-), all of which are characterized by the 

coordinated expression of specific cell surface markers [82]. DN2 thymocytes begin the rearrangement 

of a T cell receptor TCR-β chain and conclude the process of somatic recombination upon progression to 

the DN3 stage [79, 83]. 

Progression to the DN3 stage indicates commitment to the T cell lineage [80], and the DN4 stage 

is a period of rapid proliferation preceding transition to double positive (DP) thymocyte which confers 

cell surface expression of both the CD4 and CD8 coreceptors [84]. TCR-α chain rearrangement, occurring 

at the conclusion of this final proliferative stage, marks TCR completion and movement to the rigorous 

process of thymic selection, from which only 5% of the original thymic population emerge as mature T 

cells [84]. Thymic selection comprises three checkpoints that must all be cleared for a thymocyte to 

become a mature T cell: death by neglect, positive selection, and negative selection.  

 Death by neglect occurs alongside positive selection, and is a passive form of cell death 

in which a cortical thymocyte fails to receive necessary signals for survival, as its TCR has not ligated with 

MHC-self peptide. The vast majority of cortical thymocytes, approximately 90%, die during positive 

selection, specifically by failing to receive survival signals that are transmitted upon cross-linking of TCR 

with MHC-self peptide [84].      

Characterized by MHC restriction, positive selection ensures that the mature T cell can recognize 

self-MHC complexes, a necessary quality for eliciting an immune response against a foreign antigen. TCR 

expression enables low-affinity binding with MHC Class-I or Class-II bound with self peptide, which must 
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be recognized by the DP thymocyte. Thymocyte TCR cross-linking with MHC-self antigen promotes 

thymocyte survival and movement to the next stage of thymic selection [82]. 

 In contrast to positive selection, negative selection only clears approximately 5% of the initial 

thymocyte pool [84] but is fundamental to prevention of an autoimmune response. Negative selection is 

characterized by high-affinity engagement of the thymocyte TCR with self-MHC from dendritic cells (DC) 

or medullary epithelial cells, resulting in apoptotic death; only moderate-affinity interactions between 

TCR and MHC-self peptide allow for survival during the negative selection process.  

 Although not critical for thymic negative selection [85-87], Fas-FasL interactions are 

indispensable for peripheral selection, or post-maturation hematopoietic cell deletion, and maintenance 

of immune homeostasis. This was illustrated by loss-of-function mutations in both Fas receptor and Fas 

ligand. Lymphoproliferation (lpr) is an autosomal recessive mutation in the Fas receptor that was first 

identified in MRL/MpJ mice and has since been localized to mouse chromosome 19 [88, 89]. Generalized 

lymphoproliferative disorder (gld) is a mutation in FasL that originated in the C3H/HeJ mouse strain [90] 

on mouse chromosome 1 [38], and although nonallelic to lpr, produces nearly identical serological and 

immunopathological markers as lpr on the same mouse strain. These mutations were originally 

postulated to be involved in metabolic cycling until bone marrow transfer experiments conducted by 

Allen et al. suggested that they might be mutations in a pair of interacting molecules, such as that of 

receptor and ligand [91]. Indeed, genetic mapping analysis showed that lpr is located in close 

chromosomal proximity to the Fas receptor [92], and gld to that of the Fas ligand [38]. lpr is thus a 

mutation in Fas receptor and gld a mutation in Fas ligand, discoveries made through comparison of wild-

type (wt) and mutant cells for Fas and FasL gene expression [38, 92].  

The lpr mutation occurs as a result of premature splicing due to insertion of a early transposable 

element (ETn) containing two poly-A adenylation sites at the long terminal repeat (LTR) region within 

intron 2 of the Fas antigen gene [93]. Although initiated normally, Fas mRNA transcription is terminated 
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before exon 3, resulting in limited expression and function of the Fas receptor in both MRL/MpJ and 

CH3/HeJ mice [92].  However, lpr is a leaky mutation; Fas receptor can be expressed in lpr/lpr mice, at 

approximately 1-2% of the wild-type level [94]. FasL is constitutively expressed and fully functional in 

lpr/lpr mice [95]. lprᶜᵍ, a dominant-negative mutation that is allelic to lpr, was originally detected in 

mutant mice from the CBA/K1 mouse strain [96] and is known as ‘lpr complementing gld’ due to its 

ability to induce weaker lymphadenopathy than lpr/lpr when the heterozygous gld/+ mutation is also 

present [97]. lprᶜᵍ also blocks functional Fas expression, but through a point mutation in the cytoplasmic 

apoptotic signal-transducing region of the Fas gene. Although lprᶜᵍ Fas is expressed at similar levels as 

wild-type, the receptor cannot transmit a death signal and is thus nonfunctional [81, 92].  

gld, the loss-of-function mutation in FasL, is characterized by a point mutation within the 

extracellular region of the FasL [38]. Unlike lpr, which limits Fas expression, gld still confers FasL 

expression. And although it has a low level of function, FasL in gld/gld mice displays the same 

constitutive expression pattern as in lpr/lpr mice [95, 98].  

The physiological and etiological implications of homozygosity for lpr/lpr and gld/gld are nearly 

the same. Both mutations incur massive lymphoproliferation and progressive infiltration of the spleen 

and lymph nodes with nonmalignant double negative (DN) CD4-, CD8-, and Thy1+ T cells, as well as 

increased cell surface expression of B220, which is normally expressed on B cells, and other abnormal T 

cell-surface markers [99], all of which manifest in an age-dependent manner [99]. Enhanced production 

of autoantibodies such as anti-ssDNA, IgG, and IgM [100] in lpr/lpr and gld/gld mice, links these murine 

mutations to their closest human syndrome, an autoimmune disease known as systemic lupus 

erythematosus (SLE) [101]. Another such disorder, autoimmune lymphoproliferative syndrome (ALPS), 

often confers a mutation in the Fas gene and results in symptoms similar to that seen in lpr/lpr mice 

[102]. Finally, the lpr gene is fittingly expressed in bone marrow hematopoietic stem cells [99], the site 

of origin for the global immune T cell population [8]. 
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The immunological implications of lpr/lpr and gld/gld, coupled with the demonstration of Fas 

receptor expression on the cell surface of activated B and T cells [64, 103], led to the postulation that 

Fas-FasL interactions play a critical role in immune homeostasis [87, 92, 104]. Studies conducted with 

both lpr/lpr and Fas¯/¯ mice indicate an obligatory role for Fas in peripheral clonal deletion, as 

evidenced by lymphocyte accumulation in the spleen and lymph nodes of the mutated mice [86, 87, 

105]. Additionally, when the Fas transgene is expressed in lpr/lpr mice the lymphoproliferation 

phenotype is abolished, reinforcing the indispensable role of Fas-FasL interactions in peripheral deletion 

[106]. 

Another critical role for Fas-FasL interaction in the immune system is the ability to mediate 

target cell death by signaling from CTLs and NK cells; this is in combination with other mechanisms, 

namely the perforin/granzyme pathway, in which exocytosis of perforin granules and granzyme B from 

the CTL causes target cell death  [8, 22, 107, 108]. Although their method of target cell recognition are 

different, CTLs and NK cells kill by the same lytic mechanism [109]. Naïve lymphocytes store FasL in 

intracellular lytic granules [110], and TCR/CD3 lymphocyte stimulation causes FasL localization to the 

immunological synapse [111]. This event is controlled by a proline-rich domain in the cytoplasmic tail of 

FasL, and is critical for prevention of constitutive FasL on the surface of activated cytotoxic cells. Ligation 

of cell surface FasL to target cell Fas then initiates the signaling cascade as described above (Figure 2). 

Conclusion of this cytotoxic activity and the expansion phase mark the start of a contraction phase, 

whereby immune cells begin undergoing activation-induced cell death (AICD) to bring the cell numbers 

down to normal levels [112] and prevent overgrowth that is seen in homozygous lpr/lpr and gld/gld 

mice.   

Antigen-presenting cells (APC) are another type of immune cell, which present antigen on their 

cell-surface MHC complex for interaction with TH and TC cells and have the ability to secrete cytokines; 

professional APCs, which express an MHC class II complex, are characterized by B lymphocytes, DCs, and 
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macrophages. B lymphocytes are most easily distinguished from T lymphocytes by the presence of the 

CD40 B cell receptor (BCR), a membrane-bound immunoglobulin that is heavily involved in activation 

and determination of cell fate [113]. In addition to their function as APCs, B cells can produce antibodies 

to enable cytotoxic activity. Fas expression has been detected on B cells, albeit to a lesser extent than T 

cells [64], with a marked increase in cell surface expression upon activation and corresponding increase 

in sensitivity to Fas-mediated lysis [114]. Fas-mediated B cell elimination is critical for homeostasis, 

where its absence leads to autoimmune manifestations such as hyperimmunoglobulinemia and 

splenomegaly [115]. In conclusion, these data indicate an essential role for Fas-FasL interactions in APC 

elimination and B cell-mediated target cell death; however, Fas-FasL probably acts in concert with other 

known death effectors.  

    
 
III. Role of Fas Signaling in β-Cell Death 
  
 Failure to appropriately regulate the immune system’s autoreactive T cell repertoire can 

promote autoimmune disease. A classic example of this occurs in type 1 diabetes mellitus (T1DM), a 

common endocrine disease that is characterized by selective immune-mediated destruction of insulin-

secreting pancreatic β-cells [116]. T1DM development is initiated with insulitis, a term describing 

immune cell accumulation in both the periphery as well as within the islet of Langerhans. This immune 

cell invasion is followed by an effector phase whereby leukocytes recognize exposed β-cell antigens 

presented by MHC complexes on the surface of APCs within the islet and instigate β-cell death [117]. 

Both CD4+ and CD8+ CTLs are critical for autoimmune-mediated β-cell death [118, 119]. In support of 

this, immunohistological analysis has shown leukocytic islet infiltrates to be mostly composed of T cells 

[116]; CD4+ lymphocytes are the central effector in this process [120, 121]. DCs and macrophages, also 

present in the islet infiltrate, are the first invaders that trigger the adaptive immune response, typically 

through release of the pro-inflammatory cytokine interleukin-1β (IL-1β) [122-124]. Invading T 
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lymphocytes and resident macrophages secrete IL-1β and by virtue of signaling through the IL-1 

receptor (IL-1R) on the islet β-cell surface, produce key intracellular events in the development of 

insulitis and β-cell death. Moreover, when primary islets or insulinoma cell lines are exposed to IL-1β 

alone or IL-1β combined with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), there 

is a loss of cellular function as measured through GSIS and eventual progression to cell death [19-21, 

123, 125, 126]. Finally, IL-1β-stimulated increases in the inducible form of nitric oxide synthase (iNOS), 

which catalyzes production of nitric oxide (NO), likely acts as a direct mediator of β-cell death [21, 127-

129]. However, the molecular mechanism underlying cytokine-mediated β-cell destruction is still not 

well understood. Although MHC class II expression on autoreactive CD4+ lymphocytes is normally 

required for autoantigen recognition, its expression has not been observed on islet-invading CD4+ 

lymphocytes [130]. Additionally, it is unlikely that there is one single effector mechanism of β-cell death, 

and likely varies amongst species and even individuals. Multiple proteins capable of instigating cytotoxic 

intracellular signaling might have a role in the process, with evidence implicating perforin/granzyme, 

TNF/TNFR1, and Fas-FasL [6, 7, 22, 24, 131-133]. 

The majority of studies investigating the mechanism of β-cell death and development of T1DM 

have focused on a potential role for Fas-FasL interactions. Although Fas and FasL do not contribute to 

genetic susceptibility for T1DM [134-136], their interaction was initially implicated in β-cell death when 

autoimmune diabetes-prone non-obese diabetic (NOD) mice carrying the lpr/lpr mutation failed to 

develop diabetes [24, 25]. Adoptive transfer of diabetogenic CD8+ islet-specific T cells or total 

splenocytes also failed to induce diabetes in Fas-deficient lpr/lpr mice [24, 25].  Moreover, IL-1β-induced 

β-cell-surface Fas expression could provide a mode of β-cell death by Fas receptor activation [23]. These 

findings led to the commencement of a span of studies that explored the role for Fas-FasL interactions in 

β-cell death, yet the complexities involved with islet physiology have made it difficult to conduct in vivo 

Fas β-cell studies. Accordingly, multiple systems have been designed to simulate a human diabetes 
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patient (Tables 1 & 2), and have majorly contributed to the inconclusive and conflicting results of 

subsequent Fas β-cell death studies. This review summarizes the progression of the Fas β-cell field by 

reporting the ex vivo genetic manipulations and transgenic models, and whether or not these confirm a 

dependence on Fas-FasL interactions for β-cell death and development of T1DM.    
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Method of diabetes 

induction 

Mutation/Transgene Reference 

Spontaneous lpr/lpr [24, 25, 137] 

gld/gld [138] 

RIP-lpr
cg 

[139] 

lpr/+ [24, 138, 140] 

gld/+ [139, 141] 

IL-10R-neutralized-gld/+ [142] 

IL-10-transgenic-lpr/lpr [143] 

IL-1β¯/¯, ICE¯/¯ [144] 

4.1-NOD.lpr/lpr [145] 

Ad-IL-1R¯/¯ [146] 

4.1-NOD/RIP.SOCS-1 [147] 

RIP-dnFADD [148] 

BID¯/¯ [149] 

RIP-Cre
+
Fas

fl/fl
 [150] 

Neutralizing anti-Fas Ab 

at 2-4 weeks old 

[151] 

Cyclophosphamide FasL-neutralizing Ab [152] 

TCR-HA
+
Ins-HA

+/-
Fas

fl/fl
, 

RIP-Cre
+/-

* 

[153] 

BDC2.5/NOD-lpr/lpr [154] 

MLDS RIP-Cre
+
Fas

fl/fl
* [155] 

AdCTLA4-FasL* [156] 

CD8+ T cell-mediated RIP-SOCS-1.NOD8.3 [157] 

Table 1. Summary of mutations and transgenes that comprise 
spontaneous and pharmacologically-induced models used for 
investigation of Fas-mediated β-cell death. 

*Mice of non-NOD genetic background 
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Cell Type Splenocytes Pancreatic Islets 

Genetic 

Background 

Donor Recipient Reference Donor Recipient Reference 

 NOD-wt NOD-lpr/lpr [24, 139, 

140] 

NOD-wt diabetic NOD-wt [137] 

NOD-wt NOD-scid/scid [141] NOD-wt diabetic NOD-wt* [158] 

NOD-wt NOD-scid/scid-

gld/gld 

[141] NOD-wt male NOD-wt** [137] 

diabetic NOD-wt NOD-wt* [151, 152] C3H/HeJ-wt NOD-wt** [159] 

diabetic NOD-wt NOD-scid/scid-

lpr/lpr 

[138, 139] NOD-lpr/lpr NOD-wt [152] 

SA-FasL from diabetic NOD NOD-wt [160] NOD-lpr/lpr male NOD-wt** [137] 

IL-10-transgenic NOD-lpr/lpr NOD-scid/scid [143] NOD-lpr/lpr diabetic NOD-wt [137] 

NOD-lpr/lpr NOD-scid/scid [143] C3H/HeJ-lpr/lpr NOD-wt [159] 

NOD-gld/+ NOD-scid/scid [141]  

Cell Type CD8+ islet-specific T cells CD4+ islet-specific T cells 

Genetic 

Background 

Donor Recipient Reference Donor Recipient Reference 

 NOD-wt NOD-lpr/lpr [25] NOD-wt NOD-wt [151] 

NOD-wt NOD-wt* [151] YNK7.3 clones, no 

donor 

NOD-lpr/lpr [151] 

HA-specific from Balb/c 

clone-4 TCR transgenic 

Balb/c Ins-HA-

lpr/lpr 

[161] HA-specific from TCR-

HA transgenic RAG-2¯/¯ 

INS-HA-RAG-2¯/¯ [153] 

OVA-specific from OT-1 TCR 

transgenic 

B6.MRL-lpr/lpr [162] HA-specific from TCR-

HA transgenic RAG-2¯/¯ 

INS-HA-RAG-2¯/¯-

Fas¯/¯ 

[153] 

NOD-8.3 from NOD-lpr/lpr  NOD-8.3 [163]  

Table 2. Summary of adoptive transfer models from in vivo studies that investigated the role of Fas-FasL interactions 
in β-cell death. 
 *Treated with a neutralizing/antagonist anti-FasL antibody 
 **Pharmacologically induced to diabetes 
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lpr & gld, Loss-of-Function Mutations 
 

Although the original lpr/lpr mouse was identified in the MRL/MpJ mouse strain, the mutation is 

often transferred to the non-obese diabetic (NOD) mouse for β-cell studies investigating the 

contribution of the Fas receptor. The NOD mouse is the most frequently used murine model for diabetes 

studies because it develops the disease in a T cell-dependent manner that is reminiscent of a human 

T1DM patient [164, 165]. There is a difference in rate of diabetes onset between male and female NOD 

mice. Females have decreased insulin content at 12 weeks of age and a 90-100% diabetes incidence by 

30 weeks old; males have a 40-60% incidence by the same age. Female NOD mice are thus more 

appropriate for spontaneous diabetes studies, whereas males are well-suited for studies of accelerated 

disease transfer (Jackson Labs website). Fas expression is elevated in female NOD mice at 15 weeks of 

age relative to their male counterparts and correlates with the overall gender difference observed in 

NOD mice  [166]. Similar to the MRL-lpr/lpr model, NOD-lpr/lpr mice develop lymphadenopathy and 

massive infiltration of nonmalignant DN CD4- and CD8- T cells [24, 138].  

The initial studies implicating Fas-FasL interactions in β-cell death showed that NOD-lpr/lpr mice 

failed to develop spontaneous diabetes as compared with their wild-type littermates [24, 25]. FasL-

deficient NOD-gld/gld mice were also protected from diabetes development [138]. Further, adoptive 

transfer of CD8+ islet-specific T cells or diabetogenic splenocytes from NOD-wt donor mice to NOD-

lpr/lpr mice failed to initiate diabetes, and together these studies indicated a significant role for Fas-FasL 

interactions in development of autoimmune diabetes [24, 25]. The lprᶜᵍ mutation is less commonly used 

in Fas β-cell studies, but one group showed some protection from development of spontaneous 

diabetes amongst NOD mice carrying the lprᶜᵍ mutation, which was driven by the rat insulin promoter 

(RIP) and thus confers β-cell-specific expression; the extent of diabetes protection was dependent on 

the level of transgene expression [139]. This is a significantly different observation from the lpr/lpr and 

gld/gld studies because the systemic Fas deficiency could confer altered immune function that results in 
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prevention of autoimmune-mediated β-cell destruction, as opposed to diabetes prevention by loss of 

Fas specifically in the β-cell. 

The validity of the lpr/lpr mouse as a reliable model for Fas β-cell studies has been subsequently 

questioned [137, 140]. The systemic Fas deficiency introduced by a homozygous lpr/lpr mutation may 

prevent diabetes, not due to absence of Fas from β-cells, but as a consequence of an inappropriately 

functioning immune system that cannot generate a normal inflammatory response [137, 138, 140, 152]; 

abnormal CD4- CD8- B220+ cells of NOD-lpr/lpr mice are also more resistant to sublethal irradiation 

relative to their NOD-wt counterparts [167]. Additionally, failure of adoptively transferred splenocytes 

to initiate diabetes in recipient NOD-lpr/lpr mice occurs as a result of constitutive FasL expression on 

endogenous lymphocytes, which arises as one of multiple abnormalities resulting from the lpr/lpr 

mutation. FasL overexpression on NOD-lpr/lpr lymphocytes kills diabetogenic Fas-expressing cells 

through cell surface Fas-FasL interactions before diabetes can be transferred to the recipient mouse 

[137, 140]. Furthermore, localization of the gld/gld mutation to hematopoietic tissues by adoptive 

transfer of gld/gld bone chimeras into NOD-wt mice results in DN lymphoproliferation, demonstrating 

that FasL deficiency on immune cells is the cause of the abnormal phenotype that occurs in gld/gld mice 

[141]. In order to circumvent the confounding immunological effects of the NOD-lpr/lpr and NOD-

gld/gld mouse, alternative genetic alterations and methods of diabetes induction such as islet 

transplantation and heterozygosity for lpr and gld have been developed and will be described below.  

 Interestingly, the abnormal phenotype associated with homozygosity for lpr and gld is not 

evident in mice that are heterozygous for either mutation. Heterozygotes behave in a comparable 

fashion to wild-type mice; whereas NOD-lpr/lpr mice fail to develop diabetes, NOD-lpr/+ develop 

diabetes at a similar rate to wild-type mice [24, 140]. Further, although NOD-gld/+ mice have a 0% 

incidence of spontaneous diabetes, they have normal-sized lymphoid organs and don’t develop 

lymphadenopathy or splenomegaly [138]. The absence of lymphoproliferative effects in gld/+ mice 
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indicates that these mice have a sufficient decrease in FasL expression to prevent β-cell death, but there 

is adequate FasL expression to prevent the immune implications that result from a complete loss of FasL  

[141].  

IL-10 is an anti-inflammatory cytokine that has a significant role in growth and differentiation of 

various hematopoietic cells and can prevent onset of some inflammatory conditions [168]. Although its 

involvement in T1DM development is ambiguous, IL-10 might be protective against diabetes 

development in NOD-gld/+ mice. Neutralization of pancreatic B cell-surface IL-10 receptor (IL-10R) 

causes a mostly CD4+ T cell-comprised islet cell infiltration, but not transition to diabetes [142]. 

However, this protective effect is likely specific to NOD-gld/+ mice that do not naturally develop 

diabetes, as blocking of the IL-10R in NOD-wt mice has little consequence on insulitis or diabetes 

incidence. Additionally, β-cell-specific gene transfer using recombinant adeno-associated virus vector 

(AAV) for IL-10 in NOD-wt mice has little protective effect against diabetes development [169]. These 

recent findings corroborate the above results in NOD-wt mice yet dispute the IL-10-mediated diabetes 

protection observed in NOD-gld/+ mice. Moreover, another group actually reported an acceleration of 

NOD diabetes when made transgenic for IL-10. They showed that this acceleration was independent of 

Fas, in that NOD-lpr/lpr mice were not protected from IL-10-induced diabetes. Splenocytes from these 

mice were able to transfer diabetes to NOD mice deficient in T- and B-lymphocytes by the severe 

combined immunodeficiency (scid) mutation (NOD-scid/scid), in contrast to their non-IL-10-transgenic 

NOD-lpr/lpr counterparts that could not cause this induction [143]. Yet lymphocytes from NOD-gld/+ 

mice still carry diabetogenic potential, as NOD-scid/scid mice reconstituted with splenocytes from NOD-

gld/+ or NOD-wt mice develop diabetes at similar rates to each other [141].  

A novel approach of analyzing the NOD-gld/gld mouse was taken by separating FasL expression 

in the hematopoietic and nonhematopoietic compartments of NOD-gld/gld mice and showed that 

blocking Fas expression in either compartment could prevent diabetes incidence [141]. However, 
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experiments in which wild-type splenocytes failed to cause diabetes in NOD-scid/scid-gld/gld mice with 

a systemic deficiency in FasL and the T- and B-lymphocyte population (but are Fas-sufficient) 

demonstrated that protection from diabetes development in NOD-gld/gld and NOD-gld/+ is not a result 

of abolished β-cell Fas-FasL signaling and thus favors a Fas-independent mechanism of β-cell death  

[141].  

 Sublethally irradiated NOD-lpr/lpr mice did not develop spontaneous diabetes upon adoptive 

transfer of diabetogenic cells [24, 25, 137] because abundant FasL in NOD mice homozygous for the lpr 

mutation was likely killing the adoptively transferred splenocytes [137, 140]. Therefore, the destructive 

role of Fas-FasL interactions in murine autoimmune β-cell death was investigated by grafting islets from 

murine lpr/lpr or wild-type mice into non-diabetic NOD-wt mice. Adoptive transfer of pancreatic islets 

from lpr/lpr donor mice into wild-type recipients should confer some level of islet survival if Fas were to 

play a necessary role in β-cell death, in that absence of functional Fas on the donor islet would prevent 

initiation of the intracellular death cascade via interaction with endogenous recipient FasL. However, 

after adoptive transfer of diabetogenic splenocytes to male NOD mice that had been grafted prior with 

fetal pancreatic islets from NOD-lpr/lpr or NOD-wt mice, the NOD-lpr/lpr β-cells fared better than the 

NOD-wt islets although both were eventually destroyed [137]. While modest, these findings suggest a 

role for Fas in autoimmune β-cell destruction. Another group also reported effective destruction of 

lpr/lpr islets transplanted into NOD-wt mice, and concluded a dispensable role for Fas-FasL in β-cell 

death but did not transplant wild-type islets for comparison [152]. Injection of a neutralizing anti-FasL 

antibody (Ab) did not affect diabetes incidence after adoptive transfer of diabetogenic splenocytes or 

diabetes induction with cyclophosphamide (CY), indicating Fas-independent β-cell death. In contrast, 

treatment with a neutralizing anti-FasL Ab after syngeneic islet transplantation to diabetic NOD mice 

restored normoglycemia [158]. Additionally, CH3/HeJ-lpr/lpr islets survived as indicated by normal blood 

glucose for up to 2 months in their wild-type recipient after diabetes induction with streptozotocin 
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treatment. Although the wild-type islets were destroyed, there was evidence of CD4+ and CD8+ 

lymphocyte migration to the kidney capsule in both models, which indicates Fas-independent insulitis 

but an effector phase of β-cell death that may be Fas-dependent  [159]. Furthermore, NOD-lpr/lpr fetal 

pancreas grafts could not reverse diabetes in diabetic female NOD mice; although the NOD- 

 lpr/lpr islets fared better relative to wild-type islets, they were eventually destroyed [137].  

 Another way to reduce peripheral lymphoid populations and constitutively-expressed FasL 

conferred by the lpr/lpr mutation is to delete the potentially abnormal T and B cells altogether. This 

model requires use of the scid mutation [170]; studies investigating diabetes incidence in scid/scid-

lpr/lpr mice used mouse models of similar genetic background and diabetes induction, and were 

consistent in their reported results. Reconstitution of sublethally irradiated NOD-scid/scid-lpr/lpr mice 

with diabetogenic spleen cells conferred a significant reduction in diabetes incidence relative to NOD-

scid/scid mice that carry functional Fas [138, 139]. This could infer both Fas-dependent and –

independent mechanisms; the primary justification is that the reduction in diabetes incidence could now 

be directly attributed to absence of Fas expression. An alternative explanation is that the lpr/lpr 

mutation allows for a sufficient level of functional Fas receptor activity or that autoimmune disease in 

the adoptive transfer model can also be initiated by Fas-independent mechanisms. This would 

potentially allow for a low level of diabetes incidence. 

 Studies using the lpr and gld mutations, either alone or paired with other mutations, genetic 

models, or methods of diabetes induction, comprise the majority of the Fas β-cell field (Tables 1 & 2). 

Although the homozygous mutations alone confer a dysfunctional immune system and abnormal 

phenotype that make it difficult to directly address the role of Fas-FasL interactions in β-cell death, a 

number of groups have found ways to circumvent these abnormalities and manipulate the mutations in 

combination with other genetic modifications to investigate the mechanism responsible for 

autoimmune-mediated β-cell death.  
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Induction of β-Cell Surface Fas Expression 
  

Although the lpr/lpr mutation sparked initial interest in Fas-dependent β-cell death, support for 

Fas involvement was built on the ex vivo demonstration that isolated islets from both diabetic rodents 

and humans have abundant Fas β-cell surface expression [25, 131, 171-173], whereas β-cells isolated 

from disease-free organisms have negligible quantities of cell-surface Fas expression [174-176]. To 

corroborate these findings, syngeneic islets from non-diabetic donors transplanted into diabetic NOD 

mice had abundant levels of Fas expression, whereas their normoglycemic counterparts had a 

significantly lower level of Fas expression [177]. In addition, adoptive transfer of spleen cells from 

diabetic NOD donor mice conferred Fas expression in β-cells of recipient NOD-scid/scid mice [178]. 

Some murine studies, however, reported low levels of Fas expression on the β-cell surface of diabetic 

NOD and mice induced to diabetes with CY [179-181], which may reflect a species-specific preference 

for mechanism of β-cell death and/or a disparity between modes of diabetes induction. One of these 

groups later found that the low level of Fas expression in islet tissue originally reported [179] was 

actually Fas expression on leukocytes, as indicated by dual staining with anti-CD45 and Fas [178]. 

Additionally, invading mononuclear and activated T cells stain positive for Fas activity in 

immunohistochemistry studies and become apoptotic after treatment with an anti-Fas Ab, illustrating 

that autoreactive cells can also be deleted by AICD during islet infiltration [171, 176, 180-182]. An in vivo 

study in which IL-1β-deficient female NOD mice were used noted that spontaneous diabetes was not 

significantly decreased in comparison with NOD-wt [144]. In a separate experiment, the same group 

blocked IL-1β expression by creating NOD mice deficient in IL-1β-converting enzyme (ICE), which 

converts the inactive IL-1β precursor to its active form. Spontaneous diabetes was again unaffected; if 

Fas, whose expression is induced by IL-1β, were indeed the primary β-cell death effector, β-cell death 

and diabetes induction would at least be reduced in this circumstance.  
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 Cell surface FasL expression ex vivo is perhaps more perplexing in that the findings are not 

generally in agreement. FasL expression has been demonstrated in mice with insulitis [176, 180] but not 

in the pancreas of NOD-scid/scid mice after adoptive transfer of splenocytes (data not shown) [183]. 

FasL is also reported to have constitutive expression in islet α-cells [181], and β-cells of Type 2 diabetic 

patients [184] and non-diabetic human donors [175, 184]. However, other extant studies show FasL 

expression to be present on infiltrating mononuclear cells and activated CD4+ and CD8+ lymphocytes but 

not on human or mouse islet endocrine cells [131, 171, 179, 185]. One study did note the presence of 

FasL transcript from diabetic pancreata preparations, but it wasn’t clear if this was β-cell specific or from 

another pancreatic cell type [131]. 

The most commonly cited source of the general discrepancy in detection of FasL expression is 

that the anti-FasL antibodies used in these studies range in their specificities for FasL, which can confer 

false positive staining [171, 180, 186]. Additionally, detection of FasL could be impacted by 

methodological problems such as failure to account for FasL that has been cleaved from the cell surface 

or destruction of cell-surface FasL during the process of islet isolation and purification. To avoid such 

problems, studies that intend to analyze β-cell FasL expression should rigorously test anti-FasL 

antibodies for specificity before use and employ dual staining for FasL and insulin to localize its 

expression to pancreatic β-cells. 

Although ex vivo FasL studies do not conclusively establish ability for the β-cell to express FasL 

mRNA or protein, it is well-established that FasL expression occurs on the surface of activated resident 

and invading mononuclear cells to the islet during insulitis, as described above. This makes inducible β-

cell-surface Fas expression the limiting factor for potential occurrence of β-cell-immune cell Fas-FasL 

interactions, and is a critical item to address for in vitro studies that require a method of cell surface Fas 

induction. Incubation of primary islets or transformed insulinoma cell lines with pro-inflammatory 

cytokines (e.g. IL-1β) simulates the autoimmune-mediated attack that is postulated to occur in vivo, 
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since IL-1β is released from immune cells during islet infiltration. In vitro incubation with IL-1β also 

appears to be a reliable method of Fas β-cell surface induction. Treatment of primary human, mouse, 

and rat islets with IL-1β alone or IL-1β in combination with IFN-γ and TNF-α increases Fas mRNA 

production and promotes cell surface localization in a dose-dependent manner [23, 131, 173, 177, 187-

189]. Expression of Fas after IL-1β treatment may depend on dose and time of exposure [179]. The 

combination of IL-1β, IFN-γ, and TNF-α synergizes to enhance Fas expression, but IL-1β is likely the 

dominant signal in human and murine islets [131, 179]. A similarly strong induction of cell surface Fas 

expression can be obtained through treatment of non-diabetes-prone Balb/c mouse islets with IL-1α 

[190]. Some studies then confirmed functionality of cytokine-induced cell surface Fas by demonstrating 

an increase in apoptosis after treatment with an agonist-Fas Ab or sFasL [179, 187, 190, 191]. One group 

also noted a dose-dependent increase in Fas expression after treatment of human β-cells with glucose 

concentrations of up to 33.3 mmol/L [184] yet Fas expression on isolated rat β-cells was only observed 

on β-cells of older (7-8 mos.) rats [192]. Furthermore, glucose-induced Fas expression on rat islets is not 

enhanced by treatment with cytokines or streptozotocin treatment [193]. Interestingly, one human islet 

study noted an increase in Fas transcript expression after 96 hours amongst islet cells in culture without 

treatment, at comparable levels to islets treated with IL-1β, but incubation of the untreated islets with 

an agonist anti-Fas Ab failed to induce apoptosis [194]. This suggests that cytokines promote Fas 

accumulation at the cellular membrane leading to activation of downstream intracellular cell death 

machinery [195]. Thus, isolation of islets or conditions present in culture media can potentially impact 

baseline Fas expression.  

Unlike that reported in primary murine islets, investigation of Fas mRNA and cell surface 

expression in insulinoma cells exposed to cytokines revealed contrasting findings. RIN-5F insulinoma 

cells express Fas mRNA after treatment with IL-1β, IFN-γ, and TNF-α, as well as after exposure to 

streptozotocin [196]. Exposure of NOD-derived NIT-1 cells to IL-1β and IFN-γ in combination caused an 
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induction of Fas cell surface expression [173, 191, 197] and total protein levels were nearly unchanged 

between untreated and cytokine-treated cells, which indicates that pre-transcribed Fas protein resides 

within the cell [191]; this intracellular store of Fas protein was also demonstrated in isolated islets from 

diabetes-prone BB/OK rats [189]. Silencing of Fas expression by small interfering RNA (siRNA) 

transfection in NIT-1 cells reduced Fas mRNA transcription by nearly 90%, and although the siRNA also 

conferred a significant decrease in cell surface Fas expression, it only reduced total protein expression 

after prolonged treatment [198]. This could indicate a slow turnover rate of β-cell Fas protein. C57BL/6 

mouse-derived β-TC1 cells exposed to Fas siRNA demonstrated a similar but less severe phenotype than 

in NIT-1 cells, in that β-TC1 cells had only a 70% decrease in Fas mRNA abundance [198]. This difference 

in mechanism thus appears to not only occur within groups, but between groups as well. Whereas NIT-1 

insulinoma cells can down-regulate cytokine-induced cell surface Fas after exposure to agonistic FasL, 

primary NOD islets and BALB/c islets do not show this response and maintain the same level of cell 

surface Fas expression with or without exposure to FasL [199]. 

In contrast to the above, another group treated the same NIT-1 cell line with IL-1α and IFN-γ, 

which induced Fas mRNA expression but did not confer cell surface expression [190]. Further, NOD 

mouse-derived MIN6N8 insulinoma cells expressed Fas mRNA in both the unstimulated and cytokine-

stimulated state, but Fas cell surface expression was not detected after treatment with IL-1β or IFN-γ 

[185]. Additionally, treatment of the MIN6N8 cells with an agonist anti-Fas Ab did not result in 

significant apoptosis, which suggests either non-functional Fas or a very low level of Fas expression.  

Studies investigating β-cell-specific Fas and FasL expression have had difficulty coming to a 

consensus on these criteria, in both the healthy and pathological state, for a number of reasons. 

Experimental problems such as β-cell specificity in immunostaining techniques and specificity of anti-

FasL antibodies for FasL present easily avoidable false-positives or –negatives. But these problems 

primarily surfaced because of use of separate genetic models, with this variation extending within and 



www.manaraa.com

 
 

33 
 

between primary islets and transformed cell lines. However, the ultimate ability of multiple groups to 

demonstrate Fas cell surface expression during the natural progression of diabetes in humans and mice 

was taken to mean that Fas-FasL interaction is the major mechanism of β-cell deletion.  

Because NO production is required for IL-1β-mediated cytotoxicity, it could serve as a link 

between cytokine exposure and β-cell surface Fas expression. However, a consensus on the requirement 

of NO for induction of Fas mRNA and cell surface expression has not been reached. Exposure of iNOS-

deficient murine islets to cytokines had no effect on Fas expression relative to Fas-sufficient islets [187, 

200]; and although the data was not shown, one of these groups also reported that exposure of human 

islets to the NOS inhibitor N-Methylarginine (NMMA) in addition to cytokines did not prevent induction 

of Fas mRNA [200]. This lack of response was also replicated in NOD islet cells treated with the NMMA 

and cytokines, with no significant change in Fas expression [179]. However, one of these studies 

reported only a small induction of Fas expression after cytokine treatment and was already at odds with 

other studies that report abundant cytokine-induced Fas expression [179]. In contrast to the above 

studies, treatment of non-human primate (NHP) islet β-cells with NMMA after incubation with cytokines 

resulted in attenuation of Fas expression. Additionally, treatment of NHP cells with the NO donor 

sodium nitroprusside (SNP) alone induced abundant Fas expression, and exposure of primary rat islets 

to cytokines after silencing iNOS expression by siRNA transfection abrogated Fas mRNA expression 

[188], and together indicate that IL-1β-induced Fas expression might at least be partly dependent on the 

presence of NO [131]. 

 This controversial involvement of NO in induction of β-cell Fas expression also appears to 

extend to its role in Fas-mediated β-cell death. There was little to no change in cell death among islets 

from wild-type as compared with iNOS-deficient mice [187], as well as amongst  mouse islets treated 

with NMMA [179, 190]. One study reported an essential role for Fas in β-cell death by showing that 

treatment of human islets with an anti-Fas antagonist in addition to either IL-1β or the NO donor SNP 
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had no effect upon cell death [131]. However, although SNP alone was able to induce Fas expression in 

NHP cells, cell death was analyzed in human islets and the ability of SNP to induce Fas expression in this 

cell type had not been established. Furthermore, the link between Fas and NO would have been 

strengthened had the human islets been treated with the combination of IL-1β, SNP, and anti-Fas 

antagonist. Taken together, a majority of these studies indicate that NO is not required for induction of 

Fas expression or Fas-mediated β-cell death. Although IL-1β has been shown by multiple groups to be 

separately required for both NO and Fas expression, there appears to be no dependence for NO on Fas 

expression independent of IL-1β. 

 
Transgenic Models of T Cell-Mediated Diabetes 
 
 The TCR transgenic mouse with a rearranged TCR specific to either the CD4+ or CD8+ T cell 

population is an attractive experimental model system for study of Fas-FasL interactions in β-cell death 

for two fundamental reasons: 1) Although both leukocyte populations are already known to be required, 

the mechanisms of CD4+ and CD8+ T cell-induced diabetes can be uncoupled from each other and 

separately analyzed, with a primary focus on CD8+ CTLs due to their known role as effectors of β-cell 

death [116], and 2) Transgenic mice provide a model of diabetes that is accelerated and simplified in 

comparison to spontaneous diabetes, so that the T cell repertoire and direct β-cell death mediators can 

be studied efficiently and without the complexities that are inherent to spontaneous diabetes [154, 163, 

201, 202]. Transgenic mice can thus be used to address the autoimmune requirement and mechanism of 

cell death required for T cell-mediated disease induction, neither of which has been fully elucidated. 

 TCR transgenic β-cell death studies are unique in that most do not solely focus on Fas-FasL 

interactions as the primary death effector. As mentioned above, T cell homeostasis and CTL-mediated 

target cell death are dependent on Fas-FasL interactions in addition to other death effectors, centrally 

the perforin/granzyme pathway [22, 107, 108], and to a much lesser extent, the TNF/TNFR1 pathway 

[203, 204]. Thus, a role for perforin in β-cell pathology leading to T1DM has also been investigated. Yet 
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unlike the ambiguous role for Fas-FasL interactions, perforin/granzyme appears to have a critical role in 

the effector phase of β-cell death [6, 205]. Additionally, in contrast to the initial Fas β-cell death studies 

that solely addressed Fas as a β-cell death mediator, much of Fas-relevant TCR transgenic diabetes 

research examines the role for Fas in addition to other relevant pathways in β-cell death and generally 

acknowledges that there is more than one direct mechanism involved in β-cell death. 

 One of the first studies that took this approach used transgenic mice that express β-cell-surface 

influenza virus hemagglutinin (HA), so the β-cells can be deleted by HA-specific CD8+ T cells extracted 

from TCR-transgenic mice [161]. Both the perforin and Fas pathway were separately blocked in these 

transgenic mice by use of a perforin inhibitor or by crossing the transgenic mice with the lpr/lpr 

mutation, then adoptively transferring Ins-HA recipient mice with these donor CTLs. Interestingly, loss of 

perforin alone caused a reduced incidence of diabetes, and loss of both pathways conferred a complete 

loss of diabetes induction. However, loss of Fas expression alone had a minimal impact on diabetes 

induction. Additionally, much larger numbers of perforin-deficient CTLs were required to adoptively 

transfer diabetes than Fas-deficient CTLs, and mice that received perforin-deficient CTLs still stained 

positive for small amounts of insulin amidst less islet infiltration than the mice that received Fas-

deficient CTLs. These together indicated that perforin is the major method of β-cell cytotoxicity, but in 

the absence of perforin expression, Fas-FasL interactions can cause significant cytotoxicity [161]. Two 

studies published in 2006 by the same group but using separate TCR transgenic models corroborated 

these results. Ovalbumin (OVA)-specific CTLs from OT-1 TCR transgenic mice can rapidly induce diabetes 

upon adoptive transfer to recipients that have β-cell expression of OVA and in the absence of perforin, 

β-cell killing is severely reduced. Yet absence of Fas alone has minimal effect on antigen-specific β-cell 

killing, whereas perforin- and Fas-deficiency cause complete loss of antigen-specific β-cell killing [162]. 

Islets from NOD-lpr/lpr donors were also not protected in vivo when grafted under the kidney capsule of 

mice with a rearranged TCR that is representative of the islet-specific TCR recognized by diabetogenic 
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cytotoxic CTLs (NOD8.3 mice) [163]. Additionally, NOD-wt islets were killed after treatment with CTLs 

from perforin-competent NOD8.3 mice, and this killing was severely reduced when the CTLS were from 

perforin-deficient NOD8.3 mice and completely abolished when NOD-lpr/lpr islets were exposed to the 

perforin-deficient CTLs [163]. Finally, treatment of 7-day-old NOD mice with an antagonist anti-FasL Ab 

after adoptive transfer of islet-specific CD8+ T lymphocytes did not inhibit diabetes or insulitis. However, 

treatment with the anti-FasL Ab after adoptive transfer of total splenocytes from diabetic mice 

conferred insulitis but not overt diabetes [151]. These results reiterate the essential role for perforin in 

CD8+ T cell-mediated β-cell death, where Fas-mediated β-cell death is still possible but likely responsible 

for insulitis and not the effector phase of β-cell death. 

 On the other hand, a separate study that also used NOD8.3 mice suggested a Fas-dependent 

mechanism of β-cell death after perforin-deficient mice actually demonstrated accelerated diabetes, 

and NOD8.3-CD8+ CTLs (either perforin-sufficient or -deficient) could kill Fas-sufficient but not Fas-

deficient lpr/lpr NOD β-cells in vitro [206]. A third study that also used the NOD8.3 experimental mouse 

model determined that perforin is required for the later stages of insulitis, whereas other perforin-

independent effector mechanisms are used in the early stages of insulitis [207]. Interestingly, although 

they used the same genetic mouse model, each of the NOD8.3 studies used CD8+ T cells that recognize 

separate β-cell peptides, making it difficult to draw conclusions from the combined study results since 

each might confer a different mechanism of action. To further complicate matters, a CD8-mediated 

transgenic model of diabetes in which mice express RIP-driven transgenes for TNF and CD80, both of 

which are required for diabetes induction, indicated a possible requirement for TNF in β-cell death, yet 

little to no role for perforin or Fas [202].  

Studies in which CD4+ T lymphocytes carry a transgenic TCR that recognizes a specific β-cell 

peptide, or CD4+-induced diabetes, are less frequently investigated than CD8+ TCR transgenic studies. 

Like CD8+ CTLs, CD4+ T cells are capable of β-cell cytotoxicity, as evidenced by their ability to kill Jurkat 
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cells in vitro, and can also express FasL upon activation [151]. Although these activated FasL+ T cells can 

kill NOD-scid/scid islets after IL-1α treatment to induce islet Fas expression, exposure to an anti-FasL Ab 

can’t decrease this death; additionally, treatment of NOD-lpr/lpr islets with the same T cell clones can be 

killed as efficiently as wild-type mice [151].  Cre-loxP is the term for a method of site-specific deletion of 

a gene of interest (in this case Fas receptor) [208], and can be driven by the RIP to confer β-cell specific 

Fas deletion (RIP-Cre+Fasfl/fl). This abrogates the lymphoid abnormalities associated with the systemic 

lpr/lpr mutation and makes it an ideal model system for generating tissue-specific deletion of a given 

molecule. Adoptive transfer of TCR-HA-CD4+ T cells into mice with a Cre-loxP Fas deletion had little 

difference in diabetes development relative to their Fas-sufficient counterparts. Furthermore, there was 

actually an accelerated rate of diabetes development in these Fas-deficient mice when induced to 

diabetes with CY [153]. Additionally, in a transgenic model of diabetes in which the T cell repertoire is 

composed of rearranged TCR genes from a CD4+ T cell clone (BDC2.5/NOD), Fas-deficient mice carrying 

the lpr/lpr mutation still developed insulitis and only a small proportion developed diabetes after 

treatment with CY [154]. Although this could be interpreted as an essential role for Fas in the 

BDC2.5/NOD mouse model, T cells transferred from BDC2.5/NOD-lpr/lpr mice to BDC2.5/NOD-wt mice 

had difficulty with proliferation; thus, like non-transgenic NOD-lpr/lpr mice, the decreased incidence of 

diabetes in BDC2.5/NOD-lpr/lpr is likely due to alterations in the T cell repertoire and not directly due to 

a Fas deficiency in the target tissue. 

In stark contrast to the above, incubation of IL-1α- and IFN-ϒ-treated NOD β-cells with a CD4+ 

clone that can differentiate into a CTL and expresses a highly diabetogenic TCR (4.1-CD4+ CTL) results in 

killing that is likely Fas-mediated, since this killing was abrogated when the islets were made Fas-

deficient by the NOD-lpr/lpr mutation [145]. In vivo, the 4.1-NOD.lpr/lpr mouse developed insulitis but 

not diabetes, unlike the wild-type NOD-lpr/lpr mouse, which develops neither insulitis nor diabetes; 

these results indicate that in this transgenic model Fas may be necessary for the effector phase but not 
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the initiation phase, whereas in the spontaneous model Fas may be responsible for the initiation phase 

of β-cell death [145]. These findings were corroborated when adoptive transfer of islet-specific CD4+ T 

cell clones (YNK7.3) into NOD mice, along with administration of an anti-FasL Ab, still conferred insulitis 

but significantly decreased diabetes incidence, yet when the recipient mice carried the lpr/lpr mutation 

insulitis was also significantly decreased [151]. In the same 4.1-NOD mouse model, another group 

showed that an IL-1R antagonist did not block induction of β-cell Fas expression, and indicates that IL-1β 

does not participate in upregulation of Fas expression in this particular diabetes model. These mice also 

appear to be capable of Fas-independent β-cell death, as demonstrated when NOD-lpr/lpr islets grafted 

into NOD4.1 mice were destroyed [147]. In contrast to these results, NOD mice infected with a 

replication-deficient adenovirus for an IL-1R antagonist protein protected the islets from activation of a 

protein known to be stimulated during Fas-mediated apoptosis after treatment of the islets with IL-1β 

and an agonist Ab for Fas. However, the possibility exists that this marker is not stimulated during 

inflammation-mediated cell death and other measures of protection from Fas-mediated cell death 

would have verified these results [146]. 

 Interestingly, one group that found little to no Fas expression on islet endocrine cells of 

spontaneously diabetic NOD mice after cytokine stimulation [179] did note Fas expression on β-cells of 

TCR transgenic models of diabetes [178]. They theorized that this contrast might be due to β-cell 

expression of certain endogenous inhibitors of Fas, such as suppressor of cytokine signaling-1 (SOCS-1) 

or an IL-1R antagonist. SOCS-1 has also received attention in some TCR transgenic mouse models due to 

this characteristic and its ability to provide a level of protection against diabetes induction by preventing 

the action of multiple cytokines via blocking the Jak-STAT signaling pathway [209] and hence, Fas cell-

surface induction. Indeed, SOCS-1 was expressed in NOD mouse islets deficient in Fas expression 

beginning at an age when they would be developing diabetes [178], and β-cell death and diabetes onset 

were prevented when SOCS-1 was overexpressed in β-cells of the NOD8.3 mouse model (RIP-SOCS1-
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.NOD8.3) of CD8+-mediated diabetes [157, 163]. But this protection was perforin-dependent and Fas-

independent, as seen when NOD-lpr/lpr islets overexpressing SOCS-1 were killed by 8.3 CTLS but 

perforin-deficient islets were not [163], and when NOD4.1 mice overexpressing SOCS-1 did not show an 

induction of β-cell Fas expression yet still developed diabetes [147]. Additionally, OVA-pulsed islets from 

B6.RIP-SOCS-1 were killed by OT-1 CTLs at a comparable level to wild-type B6 islets, but perforin-

deficient OT-1 CTLs couldn’t kill the SOCS-1-protected islets [162]. These findings also corroborate the 

results from some transgenic models of CD8+-mediated diabetes, and together indicate a majorly 

perforin-dependent mechanism of β-cell death. 

  
Intracellular Pathway of Fas-Mediated β-Cell Death 
 
 Under the assumption that β-cell death is dependent upon the presence of Fas-FasL signaling, 

some groups moved to begin deducing the intracellular components required for occurrence of Fas-

mediated β-cell death. Although the intracellular pathway of Fas-mediated death has been largely 

defined in some tissues, centrally those of hematopoietic origin, available data in the context of the 

pancreatic β-cell is severely limited. Furthermore, the processes of cytokine-mediated β-cell death and 

Fas-mediated β-cell death are often uncoupled from each other under the premise that cytokines can 

mediate β-cell death directly by binding to cytokine receptors on the β-cell surface or indirectly, by 

inducing cell surface expression of death effectors such as Fas or perforin. Some studies have indicated 

separate intracellular mechanisms of death for cytokine-mediated and Fas-mediated β-cell death [210], 

which seems to be paradoxical since induction of cell-surface Fas requires β-cell exposure to cytokines. 

For the purposes of this review, however, the discussion will be limited to the intracellular components 

required for Fas-mediated β-cell death. 

 Within the rat Fas promoter, an IL-1β-responsive region was determined to be between 

nucleotides -223 and -54 [211]. The transcription factors nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-kB) and CCAAT-enhancer-binding protein (C/EBP) are found within the IL-1β-
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responsive sequence at nucleotide -142 and -130 respectively, and both were determined to be critical 

to the Fas IL-1β response, as mutation of either alone causes a loss in expression normally induced by IL-

1β [211].  

The responsiveness of the Fas promoter to IL-1β ultimately results in cell surface induction of 

Fas receptor. As reviewed above (Figure 2), subsequent association of the FADD adaptor protein 

precedes oligomerization and activation of caspase-8. Indeed, this progression also occurs in the β-cell, 

where a β-cell-specific dominant-negative FADD (RIP-dnFADD) lacks a death effector domain and 

competitively inhibits binding of endogenous FADD to the death domain of Fas, which would ultimately 

prevent activation of the downstream components in this death pathway [148]. In vitro treatment of 

NOD-RIP-dnFADD islet cells with IL-1β + IFN-ϒ + FasL conferred resistance to cell death, whereas wild-

type controls were sensitive to cell death after these treatments. Additionally, diabetes incidence of 

homozygous RIP-dnFADD mice was slightly reduced as compared with NOD-wt control mice, and 

indicates a role, albeit minor, for Fas-FasL signaling in β-cell death [148]. These results also were 

corroborated in vitro, whereby blocking FADD activity in NIT-1 cells leads to a significant but not 

complete protection from cell lysis [212]. 

Just downstream of the FADD, initiator caspase-8 activity also appears to be required; however, 

evidence for the critical role of caspase-8 in Fas-mediated β-cell death is derived from islets of human 

Type 2 diabetic islets, so should be cautiously translated to the Type 1 diabetic circumstance. As 

indicated above, in vitro islet exposure to glucose can induce Fas cell surface expression [184]. FLICE-like 

inhibitory protein (FLIP), an endogenous protein that competitively inhibits caspase-8 by its structural 

similarity and lack of proteolytic activity, has decreased protein expression levels within islets from Type 

2 diabetics relative to healthy controls. This decrease in FLIP after in vitro glucose exposure also has an 

inverse correlation with cell surface Fas expression, where Fas expression increases as FLIP expression 
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decreases [213]. Although not directly measured in the study, these data and correlations could indicate 

an essential role for caspase-8 in Fas β-cell signaling.  

The intrinsic mitochondrial pathway appears not to be necessary in inflammation-mediated β-

cell death; although required in vitro for Fas-mediated mouse islet cell death [50], NOD mice deficient in 

Bid were not protected from development of spontaneous diabetes in vivo [149]. Finally, the effector 

caspase-3 has been investigated by multiple groups for its potential role in Fas-dependent β-cell death. 

βTC1 insulinoma cells that were transfected with human Fas cDNA (hFas/βTC1) and exposed to an 

agonist anti-Fas Ab had a marked increase in caspase-3-like activity. hFas/βTC1 cells transfected with an 

anti-sense knockout of caspase-3 and then treated with agonist anti-Fas also had increased survival over 

control hFas/βTC1 cells that lacked the caspase-3 knockout [214].  Additionally, NIT-1 insulinoma cells 

treated with IL-1β + IFN-γ + FasL showed an increase in caspase-3 like activity, as compared with NIT-1 

cells treated with cytokines alone [197, 215]. Finally, βLox5 is one of few available cell lines that is 

derived from adult human β-cells. When these IL-1β-resistant cells are made deficient in mitochondrial 

DNA, they are still sensitive to Fas-mediated killing, which is blocked upon addition of a pan-caspase 

inhibitor to the treatment. Although there was no negative control for comparison, these data indicate 

that in the absence of the mitochondrial pathway, Fas-mediated β-cell death can proceed in a caspase-

dependent manner [210]. Although the above-mentioned elements appear to be critical for the effector 

function of β-cell Fas-FasL interactions, it is still unclear if Fas plays a role in any stage of β-cell death. 

 

 IV. Effect of Fas Signaling on Healthy β-Cell Function 

A large proportion of Fas literature investigates its role in AICD and a growing body of studies 

analyzes its role in pathogenic β-cell death, which together and in addition to others characterizes Fas-

FasL signaling as a mostly pro-death event. However, Fas-FasL interactions can promote survival, 

regeneration, and proliferation in some tissues [216]. This idea was extended to the β-cell, where two 
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groups in particular analyzed the role of Fas in both healthy and pathological β-cell function by use of 

the Cre-loxP Fas deletion model [150, 155]. Schumann et al. crossed the RIP-Cre+Fasfl/fl deletion into mice 

of the NOD.C57BL/6j background and reported a surprising finding in that absence of Fas signaling 

impaired glucose tolerance and lowered insulin levels. They speculated on a role for Fas in β-cell 

secretory function [150]. This investigation was conducted by the same group that earlier published a 

study characterizing a dual role for Fas signaling in the β-cell; Fas β-cell expression was previously shown 

to be induced by glucose [184], which also directs expression of the caspase-8 inhibitor FLIP [213]. A 

dual role for Fas was proposed in the latter study, where increased FLIP expression promoted Fas-

mediated proliferation and decreased FLIP expression caused Fas signaling to promote cell death, all of 

which were dependent on islet exposure to high concentrations of glucose [213]; aging was also 

correlated with enhanced death in cells exposed to high glucose concentration [192]. These were 

followed up by Schumann et al., who showed that transfection of INS-1E insulinoma cells or mouse islets 

with FLIP promoted mRNA expression of pro-survival factors, such as PDX-1, insulin, and NF-ĸB; while 

Fas separately caused similar effects in this study, the dependence on Fas for the FLIP phenotype was 

not directly measured [150].  

Another group, using the RIP-Cre+Fasfl/fl mice of the 129J-C57BL/6 genetic background, reported 

opposing findings in that these mice had higher glucose tolerance and GSIS than their wild-type 

counterparts, although both wild-type and RIP-Cre+Fasfl/fl mice had similar insulin content and total 

pancreatic content [155]. Absence of Fas signaling promoted β-cell function and Fas was not required 

for islet β-cell development, as has also been suggested by other groups [148]. Moreover, there was no 

change in incidence of multiple low-dose streptozotocin (MLDS)-induced diabetes between wild-type 

and RIP-Cre+Fasfl/fl mice, indicating that Fas-FasL signaling is not critical to MLDS-induced autoimmune 

diabetes [155]. Choi et al. theorized that this disparity might result from the separate genetic 

backgrounds of the mice used in both studies, which is a likely possibility. Furthermore, the method of 
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diabetes induction was different in each of these studies, where Schumann et al. used mice of the 

NOD.C57BL/6j background and Choi et al. induced T1DM with MLDS; however, the separate methods of 

diabetes induction still wouldn’t explain the disparity between the studies in secretory function.  

 

V. Transgenic FasL as a Means of β-Cell Protection  

 Whereas some groups have attempted to characterize a role for Fas-FasL interactions in β-cell 

pathology, others have taken a different approach by attempting to determine if Fas-FasL can confer β-

cell protection by deletion of autoreactive Fas-expressing immune cells. Although the ability of islet β-

cells to express FasL remains controversial [131, 171, 176, 179, 180, 185], its well-characterized role in 

maintaining immune privilege of some tissues [67, 68] encouraged experimentation with ectopically 

expressed β-cell FasL to render the β-cell an immune-privileged site and protect it from autoimmune 

destruction. Its requirement for corneal graft survival [70] also indicated FasL as a therapeutic target for 

successful transplantation of organ and islet allografts. Furthermore, the possibility that animals 

transgenic for FasL could essentially have an endogenous means of immunosuppression at sites that do 

not naturally confer immune privilege was extraordinarily appealing [217]. However, FasL 

overexpression also presents the risk of inducing cell death in any Fas-expressing cell located within 

proximity of ectopic FasL. 

 Indeed, experimentation with mice transgenic for FasL, however, did not yield the expected 

protective outcome. NOD mice that express FasL under control of either the human insulin promoter 

(HIP) or RIP, conferring β-cell-specific gene expression, developed diabetes at an accelerated rate as 

compared with their nontransgenic littermates [25, 139, 218, 219], and the rate of acceleration between 

transgenic strains was dependent upon the baseline level of FasL expression [25, 220]. Corroborating 

well with these findings, C57BL/6 mice transgenic for human FasL (hFasL) and induced to diabetes with 

MLDS developed the disease at an accelerated rate relative to their non-transgenic littermates [196].  
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Ectopic FasL-driven accelerated disease development was particularly evident amongst 

transgenic NOD males, which develop spontaneous diabetes at a more delayed rate than female NOD 

mice, but develop accelerated diabetes at a similar rate as transgenic females. This diabetes acceleration 

was abolished, however, with addition of the dominant-negative lprᶜᵍ transgene. RIP-FasL- lprᶜᵍ mice 

developed spontaneous diabetes at a slightly decreased rate relative to NOD-wt mice, but after adoptive 

transfer of diabetogenic splenocytes into NOD-RIP-FasL mice, introduction of the lprᶜᵍ mutation was only 

able to reduce diabetes incidence to levels comparable to that of wild-type mice [139], and also 

indicates that Fas-independent mechanisms are employed in the adoptive transfer model of diabetes 

induction. Additionally, HIP-FasL mice of a non-diabetes-prone genetic background did not develop the 

accelerated spontaneous diabetes seen in NOD mice [218]. This indicates that the NOD, or diabetes-

prone-background, is required for the accelerated diabetes caused by ectopic FasL expression; without 

chemically-induced or immune-mediated islet inflammation, Fas has no way of being induced to the β-

cell surface and thus ligating FasL to initiate cell death. Finally, mice virally induced to develop T1DM by 

β-cell-specific expression of the nucleoprotein of lymphocytic choriomeningitis virus (RIP-LCMV) and 

carrying ectopic FasL (RIP-FasL) had a significant reduction in diabetes as compared to their non-RIP-FasL 

littermates [221]. Although this turned out to be due to FasL-mediated killing of autoreactive CD8+ 

lymphocytes, RIP-FasL mice infected with LCMV but lacking the nucleoprotein still developed diabetes. 

Significantly, the LCMV virus induced β-cell Fas expression; thus, this diabetes was caused by β-cell 

fratricide and exemplifies the central problem inherent to ectopically expressed β-cell FasL. 

      Accelerated rejection was also demonstrated amongst islets that were grafted from 

transgenic donor mice and transplanted under the renal capsule of recipient mice, an outcome that 

could be attained with either mFasL or sFasL [222]. In this scenario, FasL islet expression was driven by 

either the rat insulin promoter or a replication-deficient adenoviral vector containing FasL cDNA 

(AdFasL). In comparison with non-transgenic littermates or littermates transduced with an adenoviral 
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vector lacking FasL cDNA, RIP-FasL or AdFasL islets were rapidly infiltrated and destroyed [220, 223, 

224]. To corroborate these findings, diabetic NOD recipient mice transplanted under the kidney capsule 

with syngeneic islets maintained normoglycemia for 7-14 days, whereas treatment with a neutralizing 

anti-FasL Ab extended this period to 30 days [158]. In addition, administration of a neutralizing anti-Fas 

Ab to female NOD mice at 2-4 weeks of age almost completely prevented spontaneous diabetes onset 

and delayed its incidence when administered at 5-15 weeks old [151]. However, protection from 

accelerated islet rejection could be attained when the islets were co-transplanted with FasL-expressing 

myoblasts or testicular allografts, which may allow for continued interest in FasL as means of protection 

for islet transplantation [225, 226]. 

Interestingly, AdFasL islets from MRL-lpr/lpr mice and their Fas-sufficient counterparts were 

rejected in the same amount of time, which would suggest that FasL-expressing islets are not killed by 

autocrine interaction between islet Fas and FasL [224]. In vitro, however, treatment of RIP-FasL islets 

with IL-1β and IFN-γ resulted in an almost three-fold increase in cell death as compared with 

nontransgenic islets and was prevented by treatment with an antagonist anti-FasL Ab, which would 

suggest that cytokines upregulate β-cell Fas, hence making the cell susceptible to autocrine Fas-FasL 

interaction [219, 223]. These discrepant results could be rationalized by a different mechanism of action 

between RIP-FasL and AdFasL islets, but has not been conclusively determined. Finally, the genetic 

background of both donor and recipient mouse appears to plays a critical role in determination of 

whether an islet transplant will be successful or rejected. Whereas syngeneic grafts from nontransgenic 

C57BL/6 mouse donors had very little islet graft infiltration, grafts from RIP-FasL mice had undergone 

infiltration and some had already been rejected. In contrast, allogeneic grafts from both nontransgenic 

and transgenic hosts were rejected [220], and indicates that the donor and recipient must be genetically 

identical for successful graft transplantation but that, contrary to contributing to transplant success, islet 

FasL expression promotes rejection.  



www.manaraa.com

 
 

46 
 

The findings in transgenic mice and FasL-expressing islet grafts bring into question the 

difference in mechanism between naturally expressed ectopic FasL and transgenic FasL and why they 

confer such different outcomes. FasL islet expression appears to not only provoke acceleration of 

diabetes, but also is not an appropriate therapeutic target for islet grafting. Based on the herein 

reported results, mice transgenic for β-cell FasL may be susceptible to autocrine Fas-FasL interaction 

after FasL-mediated neutrophil recruitment and subsequent Fas β-cell-surface activity.  

In opposition to transgenic β-cell Fas expression, silencing of Fas expression by siRNA technology 

may be a potential route to therapy. NOD mice were significantly protected from CY-induced diabetes 

when a systemic non-viral Fas siRNA was administered intravenously at the time of CY administration, 

but it is not known if these mice also carried the abnormal phenotype conferred by the lpr/lpr Fas 

deficiency mutation. The potential role for Fas in insulitis was reiterated when Fas siRNA was 

administered to these mice during the β-cell death phase of CY-induced diabetes, where there was no 

protection from diabetes [227]. This also indicates that therapies against Fas-FasL interactions might be 

most effective when targeting the insulitic phase of β-cell death. 

 
 
VI. Conclusion 
  
 Fas-FasL signaling is fundamental to maintenance of homeostasis in multiple tissues.  Binding of 

FasL to its receptor is characterized by autocrine or paracrine interaction, of which is largely determined 

by the ability of the tissue in question to express the receptor, ligand, or both [8]. Any tissue that can 

express cell surface Fas is vulnerable to death by ligation of FasL, and FasL expression is therefore strictly 

limited to activated T and NK cells, in addition to its constitutive expression on tissues of immune 

privilege. However, this concept of FasL-mediated immune privilege appears to be limited to specific 

tissues, in that ectopic FasL expression on pancreatic islets actually results in accelerated diabetes 
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development, in stark contrast to the intended purpose of protection from autoimmune invasion [25, 

139, 218, 219]. 

Perhaps the most critical role for Fas signaling is in peripheral selection and maintenance of 

immune homeostasis, as was revealed by the abnormal hematopoietic cell repertoire in mice with a 

systemic deficiency of Fas (lpr/lpr) or FasL (gld/gld). These mice exhibited a number of abnormal 

phenotypes, such as massive lymphoproliferation and accumulation of non-malignant double-negative T 

cells in the spleen and lymph nodes. Following these findings, investigation into the role for Fas signaling 

in β-cell death was sparked with the demonstration that mice carrying the lpr/lpr and gld/gld mutations 

were completely protected from autoimmune diabetes development [24, 25, 138] and NOD-lpr/lpr mice 

adoptively transferred with diabetogenic cells failed to develop diabetes, which together cast a critical 

role for Fas signaling in β-cell death. However, it was soon realized that this protection from diabetes did 

not result from absence of Fas signaling on the β-cell, but rather as a result of the lymphoid 

abnormalities conferred by absence of Fas on the hematopoietic cell surface, and prevented the 

autoimmune response required for T1DM initiation. NOD-lpr/lpr mice also express high levels of FasL, 

which was likely killing adoptively transferred splenocytes before they could initiate diabetes in the 

recipient mouse [137, 140]. Although Fas β-cell studies using only the systemic lpr/lpr or gld/gld 

mutation are not applicable to determining its role in β-cell pathology, interest in Fas as a β-cell death 

effector lingered with the demonstration that pro-inflammatory cytokines, namely IL-1β, induced mRNA 

and cell-surface β-cell Fas expression [23] and that β-cells isolated from newly-diagnosed diabetes 

patients had abundant β-cell-surface Fas expression [131, 171]. However, the multiple genetic 

backgrounds comprising the in vivo and in vitro Fas β-cell death research, in combination with numerous 

mutations and manipulations, have resulted in a convoluted and unclear role for Fas signaling in β-cell 

death.  
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 There exists a broad repertoire of studies that have concluded some role for Fas signaling in β-

cell death. Although the extent of its role varies between studies, there seems to be a general consensus 

that more than one death effector participate in β-cell death, and confers both Fas-dependent and Fas-

independent mechanisms of death. For example, sublethally irradiated NOD-scid/scid-lpr/lpr mice 

reconstituted with diabetogenic spleen cells had a significant reduction in diabetes incidence relative to 

NOD-scid/scid counterparts that were sufficient in Fas; this suggests a Fas-dependent mechanism of 

disease development. However, a level of disease development still occurred in the Fas-deficient mice, 

which also suggests Fas-independent T1DM development [138, 139]. TCR transgenic mouse with a 

rearranged TCR specific to the CD8+ T cell population, conferring CD8+-mediated diabetes, found that 

the perforin/granzyme signaling pathway comprises the major effector in β-cell death, but in the 

absence of perforin, Fas signaling is also capable of executing β-cell death [161-163]. Also in CD8+ and 

one model of CD4+ transgenic mice, there were reports that the Fas signaling pathway is responsible for 

the initiation phase of β-cell death, whereas the perforin/granzyme pathway is responsible for the 

effector phase [145, 151]. Furthermore, one of the first studies that analyzed the contribution of 

perforin/granzyme to β-cell death found that perforin-deficient mice developed insulitis but not overt 

diabetes, supporting this role for Fas in the initiation phase of diabetes development [6]. These findings 

were also maintained by a study in which female NOD mice administered with a neutralizing anti-Fas Ab 

at 2-4 weeks old were almost completely protected from spontaneous diabetes, and when administered 

at 5-15 weeks they had a delayed incidence. In contrast, when the neutralizing Ab was administered at a 

later time when β-cell death was occurring, diabetes incidence was unaffected [151]. Together, these 

findings strongly suggest that the perforin/granzyme signaling pathway comprises the effector phase of 

β-cell death, and that Fas signaling is likely responsible for the initiation phase of this process. 

 Contrary to the above, however, a significant proportion of Fas β-cell research has indicated that 

β-cell death and development of T1DM are completely independent of Fas signaling. NOD-scid/scid-
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gld/gld mice reconstituted with wild-type splenocytes did not develop diabetes even though the 

recipients were Fas-sufficient and the adoptively transferred splenocytes were FasL-sufficient [141]. 

NOD mice deficient in IL-1β and thus unable to induce Fas to the β-cell surface also did not have 

decreased diabetes incidence relative to NOD-wt littermates [144]. Further, an in vitro model of 

transgenic CD4+-induced diabetes revealed that treatment of NOD-lpr/lpr islets with the CD4+ T cell 

clones elicited a similar killing efficiency as NOD-wt islets [151]. β-cell-specific deletion of Fas gene (RIP-

Cre+Fasfl/fl) on the 129J-C57BL/6 mouse genetic background did not confer any protection from diabetes 

induced with MLDS relative to their Fas-sufficient counterparts [155]. These more recent results from a 

highly tissue-specific model diminish the likelihood of a critical role for Fas signaling during autoimmune-

mediated β-cell death. Moreover, diabetes incidence was not affected upon injection of a neutralizing 

anti-FasL Ab after disease induction with either CY or adoptive transfer of diabetogenic splenocytes 

[152]. It does, however, bear mention that blocking the Fas pathway in the early stages of CY-triggered 

diabetes prevents diabetes incidence [143], not by blocking Fas β-cell signaling, but likely by preventing 

the T cell deletion that CY should confer [152, 228].  

 Nevertheless, Fas might still play a critical role in development of T1DM, not through its 

signaling in β-cells but from its altered signaling in the hematopoietic cellular population, which could 

result in dysfunctional AICD of autoreactive T lymphocytes localized to the pancreatic islet [229]. Indeed, 

newly-diagnosed diabetes patients have significantly decreased Fas expression on the surface of T and B 

cells relative to healthy controls [230] and T lymphocytes from NOD mice have demonstrated a 

resistance to AICD [231]. Also in support of this idea, treatment of NOD mice with an agonist anti-Fas Ab 

conferred resistance to diabetes; immunohistochemical analysis of pancreatic samples from these 

animals showed that infiltrating cells and not insulin-positive cells were being targeted by the Ab (data 

not shown)[182], although how the antibody selectively targeted hematopoietic cells and not endocrine 

cells is unclear. Furthermore, adoptive transfer of diabetogenic splenocytes that were pre-treated with a 
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fusion protein of FasL bound to streptavidin (conferring an effective ability to induce cell death in 

diabetogenic cells) into NOD female mice resulted in a significantly delayed incidence of diabetes [160]. 

Similar results were also demonstrated in mice injected with an AdCTLA4-FasL fusion protein, when the 

mice were induced with MLDS and failed to develop diabetes; additionally, splenocytes from these mice 

could not induce diabetes in syngeneic recipients [156]. Taken together, targeting the autoreactive T cell 

repertoire by administration of an agonist Ab for Fas or soluble Fas ligand might be an effective 

therapeutic intervention. However, the treatment would have to be specific for the target population, as 

any cell that constitutively expresses Fas would be otherwise vulnerable to death, potentially resulting in 

severe side effects and even death [40, 81].  

  Islet β-cell death studies are conducted in a wide variety of in vivo and in vitro models that 

together comprise a number of genetic backgrounds, some of which are described above for 

investigation of Fas-FasL signaling in β-cell death and development of T1DM. This range of model 

systems can confer separate mechanisms of general function and death, as has been illustrated in the 

numerous Fas β-cell death studies that are unable to come to a consensus on the role for Fas signaling in 

β-cell death and T1DM development. Ultimately, the use of one single and appropriate model system 

would likely diminish this disparity in reported findings. A possibility of such is the Cre-loxP 

recombination system, whereby Fas is the target gene and Cre recombinase expression is driven by the 

RIP to confer β-cell-specific gene deletion; this would present a simple and effective model system for 

use in Fas β-cell research. Two groups have already used Cre-loxP gene targeting to analyze the role for 

Fas in insulin secretion (NOD genetic background) [150] and β-cell pathology (non-NOD genetic 

background) [155], but reported contrasting findings. Investigators have yet to explore β-cell pathology 

using Cre-loxP gene targeting on the NOD mouse background, which would confer β-cell-specific Fas 

deletion in a mouse model of spontaneous diabetes. This type of study design holds promise for the 

future of Fas β-cell research.  
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Finally, although the NOD mouse is an extraordinarily useful model for the study of T1DM, it 

likely has a separate mechanism of β-cell death relative to humans; this is exemplified by the numerous 

cures identified in the NOD mouse, of which are yet to be successfully translated to a human T1DM 

patient [232]. Use of human islets for such studies may be the preferred genetic model for two 

fundamental reasons: 1) Use of one genetic model for all T1DM studies might eliminate the disparity 

between studies, and 2) Results from human islet studies are more likely to translate to a living human. 

However, human pancreatic biopsy sampling is exceptionally difficult and costly due to the inaccessible 

physiology of the pancreas. Although research into the mechanism underlying β-cell death has 

progressed significantly in recent years, an ideal model system has yet to be developed that can 

accurately translate experimental findings to a safe method of T1DM prevention. 
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Classification of Literature Review Style 
 
This literature review is categorized as a narrative review (vs. systematic) for the following reasons:
 1. Critically analyzes and discusses the current state of a specific science topic. 
 2. Does not use a methodological approach in which readers could reproduce the data 

reported solely by reading the review document.  
3. Narrative approach summarizes relevant primary literature. See Figure 3 for method of article 

selection. 
 4. Qualitative vs. quantitative approach.  
 
 
 

 

Figure 3. Method for accumulation of articles to be investigated in literature review. 
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 All Articles Review 

Fas + Islet 207 11 

FasL + Islet 95 5 

Fas ligand + Islet 121 9 

Fas + β cell 1630 182 

FasL + β cell 417 45 

Fas ligand + beta 
cell 

729 83 

Fas + diabetes 662 84 

FasL + diabetes 155 23 

Fas ligand + 
diabetes 

241 38 

Fas + Type 1 
diabetes 

215 30 

FasL + Type 1 
diabetes 

94 15 

Fas ligand + Type 1 
diabetes 

124 21 

Fas + T cell + 
diabetes 

151 25 

FasL + T cell + 
diabetes 

72 12 

Fas ligand + T cell + 
diabetes 

102 20 

Fas + T cell + T1D 103 17 

FasL + T cell + T1D 51 9 

Fas ligand + T cell + 
T1D 

68 13 

Table 3. Compilation of Fas β-cell death-relevant search terms 
and PubMed results for both primary literature and 
reviews. 
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 All Articles Review 

CD95 + Islet 89 6 

CD95L + Islet 101 5 

CD95 Ligand + Islet 112 7 

CD95 + β cell 808 67 

CD95L + β cell 596 55 

CD95 Ligand + β cell 668 66 

CD95 + diabetes 221 29 

CD95L + diabetes 206 31 

CD95 Ligand + 
diabetes 

226 35 

CD95 + Type 1 
diabetes 

121 17 

CD95L + Type 1 
diabetes 

106 17 

CD95 Ligand + Type 
1 diabetes 

119 20 

CD95 + T cell + 
diabetes 

86 15 

CD95L + T cell + 
diabetes 

87 17 

CD95 Ligand + T cell 
+ diabetes 

97 20 

CD95 + T cell + T1D 60 11 

CD95L + T cell + T1D 58 11 

CD95 Ligand + T cell 
+ T1D 

65 13 

Table 4. Compilation of CD95 β-cell death-relevant search 
terms and PubMed results for both primary literature 
and reviews. 
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